Submission #974519

# Submission time Handle Problem Language Result Execution time Memory
974519 2024-05-03T12:12:21 Z kilkuwu Palindromes (APIO14_palindrome) C++17
100 / 100
481 ms 54092 KB
#include <bits/stdc++.h>
 
#define nl '\n'
 
#ifdef LOCAL
#include "template/debug.hpp"
#else
#define dbg(...) ;
#define timer(...) ;
#endif
 
namespace hash {
using u64 = uint64_t;
using u32 = uint32_t;
constexpr int kSeed = -1;  // change this to fixed seed for predictable base
constexpr u64 kAlpha = 1000000007;  // the value is from 0 -> kAlphabet - 1
constexpr u64 kMod = (1ULL << 61) - 1;
static_assert(kMod - kAlpha > 2);
// randomly getting an odd base from kAlpha + 1 -> kMod - 1
u64 get_random_base(u64 not_this = -1) {
  std::mt19937_64 h_rng(
      kSeed == -1
          ? std::chrono::high_resolution_clock::now().time_since_epoch().count()
          : kSeed);
  auto rd = std::uniform_int_distribution<u64>(kAlpha + 2, kMod - 1);
  u64 base = rd(h_rng);
  base -= base % 2 == 0;
  while (base == not_this) {
    base = rd(h_rng);
    base -= base % 2 == 0;
  }
  return base;
}
u64 mul(u64 a, u64 b) {
  u64 l1 = (u32)a, h1 = a >> 32, l2 = (u32)b, h2 = b >> 32;
  u64 l = l1 * l2, m = l1 * h2 + l2 * h1, h = h1 * h2;
  u64 ret = (l & kMod) + (l >> 61) + (h << 3) + (m >> 29) + (m << 35 >> 3) + 1;
  ret = (ret & kMod) + (ret >> 61);
  ret = (ret & kMod) + (ret >> 61);
  return ret - 1;
}
u64 add(u64 a, u64 b) { return a += b, a -= (a >= kMod) * kMod; }
u64 sub(u64 a, u64 b) { return a + (a < b) * kMod - b; }
u64 p = get_random_base(), q = get_random_base(p);
std::vector<u64> pp(1, 1), qq(1, 1);
void ensure_pp_size(int size) {
  while ((int)pp.size() < size) pp.emplace_back(mul(pp.back(), p));
}
void ensure_qq_size(int size) {
  while ((int)qq.size() < size) qq.emplace_back(mul(qq.back(), q));
}
struct FwdHash {
  std::vector<u64> hf;
  FwdHash() = default;
  template <typename String>
  FwdHash(const String& s) : hf(s.size() + 1) {
    ensure_pp_size(s.size() + 1);
    for (int i = 0; i < (int)s.size(); i++) {
      hf[i + 1] = add(mul(hf[i], p), s[i] + 1);
    }
  }
  int size() const { return hf.size() - 1; }
  // NOTE: [l, r)
  u64 get_fwd(int l, int r) const { return sub(hf[r], mul(hf[l], pp[r - l])); }
  int operator[](int index) const { return get_fwd(index, index + 1) - 1; }
};
struct FBHash : FwdHash {
  std::vector<u64> hb;
  FBHash() = default;
  template <typename String>
  FBHash(const String& s) : FwdHash(s), hb(s.size() + 1) {
    for (int i = s.size() - 1; i >= 0; i--) {
      hb[i] = add(mul(hb[i + 1], p), s[i] + 1);
    }
  }
  // NOTE: [l, r)
  u64 get_bwd(int l, int r) const { return sub(hb[l], mul(hb[r], pp[r - l])); }
};
struct Hash2D {
  std::vector<std::vector<u64>> h;
  Hash2D() = default;
  template <typename String2D>
  Hash2D(const String2D& s)
      : h(s.size() + 1, std::vector<u64>(s[0].size() + 1)) {
    int n = s.size();
    int m = s[0].size();
    ensure_pp_size(n + 1);
    ensure_qq_size(m + 1);
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        h[i + 1][j + 1] = add(mul(h[i + 1][j], q), s[i][j] + 1);
      }
    }
    for (int i = 1; i <= n; i++) {
      for (int j = 1; j <= m; j++) {
        h[i][j] = add(mul(h[i - 1][j], p), h[i][j]);
      }
    }
  }
  // NOTE: [x, u) * [y, v)
  u64 get(int x, int y, int u, int v) {
    auto res = sub(h[u][v], mul(h[x][v], pp[u - x]));
    res = sub(res, mul(h[u][y], qq[v - y]));
    return add(res, mul(mul(h[x][y], pp[u - x]), qq[v - y]));
  }
};
// NOTE: [l1, h1.size()) and [l2, h2.size())
int longest_common_prefix(const FwdHash& h1, const FwdHash& h2, int l1,
                          int l2) {
  int lb = 0, rb = std::min(h1.size() - l1, h2.size() - l2) + 1;
  while (lb < rb - 1) {
    int mb = (lb + rb) / 2;
    if (h1.get_fwd(l1, l1 + mb) == h2.get_fwd(l2, l2 + mb)) {
      lb = mb;
    } else {
      rb = mb;
    }
  }
  return lb;
}
// NOTE: [0, r1) and [0, r2)
int longest_common_suffix(const FwdHash& h1, const FwdHash& h2, int r1,
                          int r2) {
  int lb = 0, rb = std::min(r1, r2) + 1;
  while (lb < rb - 1) {
    int mb = (lb + rb) / 2;
    if (h1.get_fwd(r1 - mb, r1) == h2.get_fwd(r2 - mb, r2)) {
      lb = mb;
    } else {
      rb = mb;
    }
  }
  return lb;
}
// NOTE: [l1, r1) and [l2, r2)
bool is_smaller(const FwdHash& h1, const FwdHash& h2, int l1, int r1, int l2,
                int r2) {
  int lcp = longest_common_prefix(h1, h2, l1, l2);
  int len1 = r1 - l1;
  int len2 = r2 - l2;
  int min_len = std::min(len1, len2);
  return lcp >= min_len ? len1 < len2 : h1[l1 + lcp] < h2[l2 + lcp];
}
}  // namespace hash
 
using hash::FBHash;
using hash::FwdHash;
using hash::Hash2D;
 
namespace suffarr {
std::vector<int> sa_is(const std::vector<int> &s, int upper) {
  int n = int(s.size());
  if (n == 0) return {};
  if (n == 1) return {0};
  if (n == 2) {
    if (s[0] < s[1]) {
      return {0, 1};
    } else {
      return {1, 0};
    }
  }
  std::vector<int> sa(n);
  std::vector<bool> ls(n);
  for (int i = n - 2; i >= 0; i--)
    ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
  std::vector<int> sl(upper + 1), ss(upper + 1);
  for (int i = 0; i < n; i++) {
    if (!ls[i])
      ss[s[i]]++;
    else
      sl[s[i] + 1]++;
  }
  for (int i = 0; i <= upper; i++) {
    ss[i] += sl[i];
    if (i < upper) sl[i + 1] += ss[i];
  }
  auto induce = [&](const std::vector<int> &lms) {
    std::fill(sa.begin(), sa.end(), -1);
    std::vector<int> bb(upper + 1);
    std::copy(ss.begin(), ss.end(), bb.begin());
    for (auto d : lms) {
      if (d == n) continue;
      sa[bb[s[d]]++] = d;
    }
    std::copy(sl.begin(), sl.end(), bb.begin());
    sa[bb[s[n - 1]]++] = n - 1;
    for (int i = 0; i < n; i++) {
      int v = sa[i];
      if (v >= 1 && !ls[v - 1]) sa[bb[s[v - 1]]++] = v - 1;
    }
    std::copy(sl.begin(), sl.end(), bb.begin());
    for (int i = n - 1; i >= 0; i--) {
      int v = sa[i];
      if (v >= 1 && ls[v - 1]) sa[--bb[s[v - 1] + 1]] = v - 1;
    }
  };
  std::vector<int> lmp(n + 1, -1);
  int m = 0;
  for (int i = 1; i < n; i++) {
    if (!ls[i - 1] && ls[i]) lmp[i] = m++;
  }
  std::vector<int> lms;
  lms.reserve(m);
  for (int i = 1; i < n; i++) {
    if (!ls[i - 1] && ls[i]) lms.push_back(i);
  }
  induce(lms);
  if (m) {
    std::vector<int> sorted_lms;
    sorted_lms.reserve(m);
    for (int v : sa) {
      if (lmp[v] != -1) sorted_lms.push_back(v);
    }
    std::vector<int> rec_s(m);
    int rec_upper = 0;
    rec_s[lmp[sorted_lms[0]]] = 0;
    for (int i = 1; i < m; i++) {
      int l = sorted_lms[i - 1], r = sorted_lms[i];
      int end_l = (lmp[l] + 1 < m) ? lms[lmp[l] + 1] : n;
      int end_r = (lmp[r] + 1 < m) ? lms[lmp[r] + 1] : n;
      bool same = true;
      if (end_l - l != end_r - r) {
        same = false;
      } else {
        while (l < end_l) {
          if (s[l] != s[r]) break;
          l++;
          r++;
        }
        if (l == n || s[l] != s[r]) same = false;
      }
      if (!same) rec_upper++;
      rec_s[lmp[sorted_lms[i]]] = rec_upper;
    }
    auto rec_sa = sa_is(rec_s, rec_upper);
    for (int i = 0; i < m; i++) {
      sorted_lms[i] = lms[rec_sa[i]];
    }
    induce(sorted_lms);
  }
  return sa;
}
std::vector<int> suffix_array(const std::vector<int> &s, int upper) {
  assert(0 <= upper);
  for (int d : s) assert(0 <= d && d <= upper);
  return sa_is(s, upper);
}
template <class T>
std::vector<int> suffix_array(const std::vector<T> &s) {
  int n = int(s.size());
  std::vector<int> ord(n);
  iota(ord.begin(), ord.end(), 0);
  sort(ord.begin(), ord.end(), [&](int l, int r) { return s[l] < s[r]; });
  std::vector<int> s2(n);
  int now = 0;
  for (int i = 0; i < n; i++) {
    if (i && s[ord[i - 1]] != s[ord[i]]) now++;
    s2[ord[i]] = now;
  }
  return sa_is(s2, now);
}
std::vector<int> suffix_array(const std::string &s) {
  int n = int(s.size());
  std::vector<int> s2(n);
  for (int i = 0; i < n; i++) s2[i] = s[i];
  return suffarr::sa_is(s2, 255);
}
template <class String>
std::vector<int> lcp_array(const String& s,
                           const std::vector<int> &sa) {
  int n = int(s.size());
  assert(n >= 1);
  std::vector<int> rnk(n);
  for (int i = 0; i < n; i++) rnk[sa[i]] = i;
  std::vector<int> lcp(n - 1);
  int h = 0;
  for (int i = 0; i < n; i++) {
    if (h > 0) h--;
    if (rnk[i] == 0) continue;
    int j = sa[rnk[i] - 1];
    for (; j + h < n && i + h < n; h++) {
      if (s[j + h] != s[i + h]) break;
    }
    lcp[rnk[i] - 1] = h;
  }
  return lcp;
}
}  // namespace suffarr
 
using suffarr::suffix_array;
using suffarr::lcp_array;
 
template<typename T, typename F>
struct SparseTable {
  std::vector<std::vector<T>> t;
 
  SparseTable() {}
  SparseTable(const std::vector<T>& a) : t(std::__lg(a.size()) + 1) {
    t[0] = a;
    for (int k = 0; k + 1 < (int) t.size(); k++) { 
      t[k + 1].resize(a.size() - (1 << (k + 1)) + 1);
      for (int i = 0; i < (int) t[k + 1].size(); i++)
        t[k + 1][i] = F()(t[k][i], t[k][i + (1 << k)]);
    }
  }
 
  // NOTE: [l, r)
  T query(int l, int r) {
    int k = std::__lg(r - l);
    return F()(t[k][l], t[k][r - (1 << k)]);
  }
};
 
template<typename T>
struct MinMerge {
  T operator()(const T& a, const T& b) {
    return std::min<T>(a, b);
  }
};
 
template <typename T>
using MinSparseTable = SparseTable<T, MinMerge<T>>;
 
signed main() {
  std::ios::sync_with_stdio(false);
  std::cin.tie(nullptr);
 
  std::string s;
  std::cin >> s;
  int n = s.size();
  FBHash hasher(s);
 
  // we get all unique palindromes
 
  struct Palindrome {
    int m1, m2, len;
  };
 
  std::set<uint64_t> palin_hashes;
  std::vector<Palindrome> unique_palins;
 
  auto is_palindrome = [&](int l, int r) -> bool {
    return hasher.get_fwd(l, r) == hasher.get_bwd(l, r);
  };
 
  auto add_all = [&](int m1, int m2) {
    int lb = 0, rb = std::min(m1 + 1, n - m2) + 1;
 
    while (lb < rb - 1) {
      int mb = (lb + rb) / 2;
      if (is_palindrome(m1 - mb + 1, m2 + mb)) {
        lb = mb;
      } else {
        rb = mb;
      }
    }
 
    int len = lb;
    while (len > 0) {
      auto hsh = hasher.get_fwd(m1 - len + 1, m2 + len);
      auto it = palin_hashes.insert(hsh);
      if (it.second == false) break;
      unique_palins.push_back({m1, m2, len});
      len--;
    }
  };
 
  for (int i = 0; i < n; i++) {
    add_all(i, i);
    if (i + 1 < n) {
      add_all(i, i + 1);
    }
  }
 
  auto sa = suffix_array(s);
  auto lcp = lcp_array(s, sa);
 
  std::vector<int> pos(n);
 
  for (int i = 0; i < n; i++) {
    pos[sa[i]] = i;
  }
 
  MinSparseTable<int> tab(lcp);
 
  dbg(sa);
  dbg(lcp);
 
  /*
  2 bbbc 
  1 bbc
  0 bc
    c
  */
 
  auto count_occurrence = [&](int l, int r) -> int {
    int len = r - l;
 
    l = pos[l];
    int upper = l;
    int lb = 0, rb = l - 1;
    
    while (lb <= rb) {
      int mb = (lb + rb) / 2;
      int val = tab.query(mb, l);
      if (val >= len) {
        upper = mb;
        rb = mb - 1;
      } else {
        lb = mb + 1;
      }
    }
 
    int lower = l;
    lb = l + 1, rb = n - 1;
 
    while (lb <= rb) {
      int mb = (lb + rb) / 2;
      int val = tab.query(l, mb);
 
      if (val >= len) {
        lower = mb;
        lb = mb + 1;
      } else {
        rb = mb - 1;
      }
    }
 
    dbg(lower, upper);
    return lower - upper + 1;
  };
 
  // b, b, b, c
 
 
  int64_t ans = -1;
  for (auto [m1, m2, len] : unique_palins) {
    int lb = m1 - len + 1, rb = m2 + len;
    len = rb - lb;
    dbg(lb, rb);
    ans = std::max(ans, (int64_t) len * count_occurrence(lb, rb));
  }
 
  std::cout << ans << nl;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 1 ms 344 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 1 ms 344 KB Output is correct
11 Correct 1 ms 504 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 344 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 1 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 1 ms 348 KB Output is correct
24 Correct 0 ms 348 KB Output is correct
25 Correct 1 ms 348 KB Output is correct
26 Correct 0 ms 348 KB Output is correct
27 Correct 1 ms 348 KB Output is correct
28 Correct 1 ms 348 KB Output is correct
29 Correct 0 ms 348 KB Output is correct
30 Correct 0 ms 348 KB Output is correct
31 Correct 1 ms 600 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 2136 KB Output is correct
2 Correct 7 ms 1876 KB Output is correct
3 Correct 7 ms 1884 KB Output is correct
4 Correct 7 ms 1880 KB Output is correct
5 Correct 7 ms 1884 KB Output is correct
6 Correct 7 ms 1884 KB Output is correct
7 Correct 7 ms 1880 KB Output is correct
8 Correct 5 ms 1368 KB Output is correct
9 Correct 5 ms 1116 KB Output is correct
10 Correct 6 ms 1628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 92 ms 16176 KB Output is correct
2 Correct 94 ms 16076 KB Output is correct
3 Correct 97 ms 15900 KB Output is correct
4 Correct 102 ms 16088 KB Output is correct
5 Correct 93 ms 16392 KB Output is correct
6 Correct 77 ms 15364 KB Output is correct
7 Correct 95 ms 15400 KB Output is correct
8 Correct 48 ms 10248 KB Output is correct
9 Correct 69 ms 11868 KB Output is correct
10 Correct 88 ms 15368 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 379 ms 51560 KB Output is correct
2 Correct 367 ms 53012 KB Output is correct
3 Correct 378 ms 49408 KB Output is correct
4 Correct 376 ms 50996 KB Output is correct
5 Correct 481 ms 54092 KB Output is correct
6 Correct 320 ms 51464 KB Output is correct
7 Correct 302 ms 48324 KB Output is correct
8 Correct 156 ms 33588 KB Output is correct
9 Correct 157 ms 32704 KB Output is correct
10 Correct 428 ms 47628 KB Output is correct
11 Correct 372 ms 52880 KB Output is correct
12 Correct 180 ms 35340 KB Output is correct