Submission #974518

# Submission time Handle Problem Language Result Execution time Memory
974518 2024-05-03T12:06:53 Z kilkuwu Palindromes (APIO14_palindrome) C++17
100 / 100
562 ms 53904 KB
#include <bits/stdc++.h>

#define nl '\n'

#ifdef LOCAL
#include "template/debug.hpp"
#else
#define dbg(...) ;
#define timer(...) ;
#endif

namespace hash {
using u64 = uint64_t;
using u32 = uint32_t;
constexpr int kSeed = -1;  // change this to fixed seed for predictable base
constexpr u64 kAlpha = 1000000007;  // the value is from 0 -> kAlphabet - 1
constexpr u64 kMod = (1ULL << 61) - 1;
static_assert(kMod - kAlpha > 2);
// randomly getting an odd base from kAlpha + 1 -> kMod - 1
u64 get_random_base(u64 not_this = -1) {
  std::mt19937_64 h_rng(
      kSeed == -1
          ? std::chrono::high_resolution_clock::now().time_since_epoch().count()
          : kSeed);
  auto rd = std::uniform_int_distribution<u64>(kAlpha + 2, kMod - 1);
  u64 base = rd(h_rng);
  base -= base % 2 == 0;
  while (base == not_this) {
    base = rd(h_rng);
    base -= base % 2 == 0;
  }
  return base;
}
u64 mul(u64 a, u64 b) {
  u64 l1 = (u32)a, h1 = a >> 32, l2 = (u32)b, h2 = b >> 32;
  u64 l = l1 * l2, m = l1 * h2 + l2 * h1, h = h1 * h2;
  u64 ret = (l & kMod) + (l >> 61) + (h << 3) + (m >> 29) + (m << 35 >> 3) + 1;
  ret = (ret & kMod) + (ret >> 61);
  ret = (ret & kMod) + (ret >> 61);
  return ret - 1;
}
u64 add(u64 a, u64 b) { return a += b, a -= (a >= kMod) * kMod; }
u64 sub(u64 a, u64 b) { return a + (a < b) * kMod - b; }
u64 p = get_random_base(), q = get_random_base(p);
std::vector<u64> pp(1, 1), qq(1, 1);
void ensure_pp_size(int size) {
  while ((int)pp.size() < size) pp.emplace_back(mul(pp.back(), p));
}
void ensure_qq_size(int size) {
  while ((int)qq.size() < size) qq.emplace_back(mul(qq.back(), q));
}
struct FwdHash {
  std::vector<u64> hf;
  FwdHash() = default;
  template <typename String>
  FwdHash(const String& s) : hf(s.size() + 1) {
    ensure_pp_size(s.size() + 1);
    for (int i = 0; i < (int)s.size(); i++) {
      hf[i + 1] = add(mul(hf[i], p), s[i] + 1);
    }
  }
  int size() const { return hf.size() - 1; }
  // NOTE: [l, r)
  u64 get_fwd(int l, int r) const { return sub(hf[r], mul(hf[l], pp[r - l])); }
  int operator[](int index) const { return get_fwd(index, index + 1) - 1; }
};
struct FBHash : FwdHash {
  std::vector<u64> hb;
  FBHash() = default;
  template <typename String>
  FBHash(const String& s) : FwdHash(s), hb(s.size() + 1) {
    for (int i = s.size() - 1; i >= 0; i--) {
      hb[i] = add(mul(hb[i + 1], p), s[i] + 1);
    }
  }
  // NOTE: [l, r)
  u64 get_bwd(int l, int r) const { return sub(hb[l], mul(hb[r], pp[r - l])); }
};
struct Hash2D {
  std::vector<std::vector<u64>> h;
  Hash2D() = default;
  template <typename String2D>
  Hash2D(const String2D& s)
      : h(s.size() + 1, std::vector<u64>(s[0].size() + 1)) {
    int n = s.size();
    int m = s[0].size();
    ensure_pp_size(n + 1);
    ensure_qq_size(m + 1);
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        h[i + 1][j + 1] = add(mul(h[i + 1][j], q), s[i][j] + 1);
      }
    }
    for (int i = 1; i <= n; i++) {
      for (int j = 1; j <= m; j++) {
        h[i][j] = add(mul(h[i - 1][j], p), h[i][j]);
      }
    }
  }
  // NOTE: [x, u) * [y, v)
  u64 get(int x, int y, int u, int v) {
    auto res = sub(h[u][v], mul(h[x][v], pp[u - x]));
    res = sub(res, mul(h[u][y], qq[v - y]));
    return add(res, mul(mul(h[x][y], pp[u - x]), qq[v - y]));
  }
};
// NOTE: [l1, h1.size()) and [l2, h2.size())
int longest_common_prefix(const FwdHash& h1, const FwdHash& h2, int l1,
                          int l2) {
  int lb = 0, rb = std::min(h1.size() - l1, h2.size() - l2) + 1;
  while (lb < rb - 1) {
    int mb = (lb + rb) / 2;
    if (h1.get_fwd(l1, l1 + mb) == h2.get_fwd(l2, l2 + mb)) {
      lb = mb;
    } else {
      rb = mb;
    }
  }
  return lb;
}
// NOTE: [0, r1) and [0, r2)
int longest_common_suffix(const FwdHash& h1, const FwdHash& h2, int r1,
                          int r2) {
  int lb = 0, rb = std::min(r1, r2) + 1;
  while (lb < rb - 1) {
    int mb = (lb + rb) / 2;
    if (h1.get_fwd(r1 - mb, r1) == h2.get_fwd(r2 - mb, r2)) {
      lb = mb;
    } else {
      rb = mb;
    }
  }
  return lb;
}
// NOTE: [l1, r1) and [l2, r2)
bool is_smaller(const FwdHash& h1, const FwdHash& h2, int l1, int r1, int l2,
                int r2) {
  int lcp = longest_common_prefix(h1, h2, l1, l2);
  int len1 = r1 - l1;
  int len2 = r2 - l2;
  int min_len = std::min(len1, len2);
  return lcp >= min_len ? len1 < len2 : h1[l1 + lcp] < h2[l2 + lcp];
}
}  // namespace hash

using hash::FBHash;
using hash::FwdHash;
using hash::Hash2D;

namespace suffarr {
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
  int n = int(s.size());
  if (n == 0) return {};
  if (n == 1) return {0};
  if (n == 2) {
    if (s[0] < s[1]) {
      return {0, 1};
    } else {
      return {1, 0};
    }
  }
  std::vector<int> sa(n);
  std::vector<bool> ls(n);
  for (int i = n - 2; i >= 0; i--)
    ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
  std::vector<int> sl(upper + 1), ss(upper + 1);
  for (int i = 0; i < n; i++) {
    if (!ls[i])
      ss[s[i]]++;
    else
      sl[s[i] + 1]++;
  }
  for (int i = 0; i <= upper; i++) {
    ss[i] += sl[i];
    if (i < upper) sl[i + 1] += ss[i];
  }
  auto induce = [&](const std::vector<int>& lms) {
    std::fill(sa.begin(), sa.end(), -1);
    std::vector<int> bb(upper + 1);
    std::copy(ss.begin(), ss.end(), bb.begin());
    for (auto d : lms) {
      if (d == n) continue;
      sa[bb[s[d]]++] = d;
    }
    std::copy(sl.begin(), sl.end(), bb.begin());
    sa[bb[s[n - 1]]++] = n - 1;
    for (int i = 0; i < n; i++) {
      int v = sa[i];
      if (v >= 1 && !ls[v - 1]) sa[bb[s[v - 1]]++] = v - 1;
    }
    std::copy(sl.begin(), sl.end(), bb.begin());
    for (int i = n - 1; i >= 0; i--) {
      int v = sa[i];
      if (v >= 1 && ls[v - 1]) sa[--bb[s[v - 1] + 1]] = v - 1;
    }
  };
  std::vector<int> lmp(n + 1, -1);
  int m = 0;
  for (int i = 1; i < n; i++) {
    if (!ls[i - 1] && ls[i]) lmp[i] = m++;
  }
  std::vector<int> lms;
  lms.reserve(m);
  for (int i = 1; i < n; i++) {
    if (!ls[i - 1] && ls[i]) lms.push_back(i);
  }
  induce(lms);
  if (!m) return sa;
  std::vector<int> sorted_lms;
  sorted_lms.reserve(m);
  for (int v : sa) {
    if (lmp[v] != -1) sorted_lms.push_back(v);
  }
  std::vector<int> rec_s(m);
  int rec_upper = 0;
  rec_s[lmp[sorted_lms[0]]] = 0;
  for (int i = 1; i < m; i++) {
    int l = sorted_lms[i - 1], r = sorted_lms[i];
    int end_l = (lmp[l] + 1 < m) ? lms[lmp[l] + 1] : n;
    int end_r = (lmp[r] + 1 < m) ? lms[lmp[r] + 1] : n;
    bool same = true;
    if (end_l - l != end_r - r) {
      same = false;
    } else {
      while (l < end_l) {
        if (s[l] != s[r]) break;
        l++;
        r++;
      }
      if (l == n || s[l] != s[r]) same = false;
    }
    if (!same) rec_upper++;
    rec_s[lmp[sorted_lms[i]]] = rec_upper;
  }
  auto rec_sa = sa_is(rec_s, rec_upper);
  for (int i = 0; i < m; i++) {
    sorted_lms[i] = lms[rec_sa[i]];
  }
  induce(sorted_lms);
  return sa;
}

std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
  assert(0 <= upper);
  for (int d : s) assert(0 <= d && d <= upper);
  return suffarr::sa_is(s, upper);
}

template <class T>
std::vector<int> suffix_array(const std::vector<T>& s) {
  int n = int(s.size());
  std::vector<int> ord(n);
  iota(ord.begin(), ord.end(), 0);
  sort(ord.begin(), ord.end(), [&](int l, int r) { return s[l] < s[r]; });
  std::vector<int> s2(n);
  int now = 0;
  for (int i = 0; i < n; i++) {
    if (i && s[ord[i - 1]] != s[ord[i]]) now++;
    s2[ord[i]] = now;
  }
  return suffarr::sa_is(s2, now);
}

std::vector<int> suffix_array(const std::string& s) {
  int n = int(s.size());
  std::vector<int> s2(n);
  for (int i = 0; i < n; i++) s2[i] = s[i];
  return suffarr::sa_is(s2, 255);
}

template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
                           const std::vector<int>& sa) {
  int n = int(s.size());
  assert(n >= 1);
  std::vector<int> rnk(n);
  for (int i = 0; i < n; i++) rnk[sa[i]] = i;
  std::vector<int> lcp(n - 1);
  int h = 0;
  for (int i = 0; i < n; i++) {
    if (h > 0) h--;
    if (rnk[i] == 0) continue;
    int j = sa[rnk[i] - 1];
    for (; j + h < n && i + h < n; h++) {
      if (s[j + h] != s[i + h]) break;
    }
    lcp[rnk[i] - 1] = h;
  }
  return lcp;
}

std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
  int n = int(s.size());
  std::vector<int> s2(n);
  for (int i = 0; i < n; i++) s2[i] = s[i];
  return lcp_array(s2, sa);
}
}  // namespace suffarr

using suffarr::lcp_array;
using suffarr::suffix_array;

template <typename T, typename F>
struct SparseTable {
  std::vector<std::vector<T>> t;

  SparseTable() {}
  SparseTable(const std::vector<T>& a) : t(std::__lg(a.size()) + 1) {
    t[0] = a;
    for (int k = 0; k + 1 < (int)t.size(); k++) {
      t[k + 1].resize(a.size() - (1 << (k + 1)) + 1);
      for (int i = 0; i < (int)t[k + 1].size(); i++)
        t[k + 1][i] = F()(t[k][i], t[k][i + (1 << k)]);
    }
  }

  // NOTE: [l, r)
  T query(int l, int r) {
    int k = std::__lg(r - l);
    return F()(t[k][l], t[k][r - (1 << k)]);
  }
};

template <typename T>
struct MinMerge {
  T operator()(const T& a, const T& b) { return std::min<T>(a, b); }
};

template <typename T>
using MinSparseTable = SparseTable<T, MinMerge<T>>;

signed main() {
  std::ios::sync_with_stdio(false);
  std::cin.tie(nullptr);

  std::string s;
  std::cin >> s;
  int n = s.size();
  FBHash hasher(s);

  // we get all unique palindromes

  struct Palindrome {
    int m1, m2, len;
  };

  std::set<uint64_t> palin_hashes;
  std::vector<Palindrome> unique_palins;

  auto is_palindrome = [&](int l, int r) -> bool {
    return hasher.get_fwd(l, r) == hasher.get_bwd(l, r);
  };

  auto add_all = [&](int m1, int m2) {
    int lb = 0, rb = std::min(m1 + 1, n - m2) + 1;

    while (lb < rb - 1) {
      int mb = (lb + rb) / 2;
      if (is_palindrome(m1 - mb + 1, m2 + mb)) {
        lb = mb;
      } else {
        rb = mb;
      }
    }

    int len = lb;
    while (len > 0) {
      auto hsh = hasher.get_fwd(m1 - len + 1, m2 + len);
      auto it = palin_hashes.insert(hsh);
      if (it.second == false) break;
      unique_palins.push_back({m1, m2, len});
      len--;
    }
  };

  for (int i = 0; i < n; i++) {
    add_all(i, i);
    if (i + 1 < n) {
      add_all(i, i + 1);
    }
  }

  auto sa = suffix_array(s);
  auto lcp = lcp_array(s, sa);

  std::vector<int> pos(n);

  for (int i = 0; i < n; i++) {
    pos[sa[i]] = i;
  }

  MinSparseTable<int> tab(lcp);

  dbg(sa);
  dbg(lcp);

  /*
  2 bbbc
  1 bbc
  0 bc
    c
  */

  auto count_occurrence = [&](int l, int r) -> int {
    int len = r - l;

    l = pos[l];
    int upper = l;
    int lb = 0, rb = l - 1;

    while (lb <= rb) {
      int mb = (lb + rb) / 2;
      int val = tab.query(mb, l);
      if (val >= len) {
        upper = mb;
        rb = mb - 1;
      } else {
        lb = mb + 1;
      }
    }

    int lower = l;
    lb = l + 1, rb = n - 1;

    while (lb <= rb) {
      int mb = (lb + rb) / 2;
      int val = tab.query(l, mb);

      if (val >= len) {
        lower = mb;
        lb = mb + 1;
      } else {
        rb = mb - 1;
      }
    }

    dbg(lower, upper);
    return lower - upper + 1;
  };

  // b, b, b, c

  int64_t ans = -1;
  for (auto [m1, m2, len] : unique_palins) {
    int lb = m1 - len + 1, rb = m2 + len;
    len = rb - lb;
    dbg(lb, rb);
    ans = std::max(ans, (int64_t)len * count_occurrence(lb, rb));
  }

  std::cout << ans << nl;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 1 ms 348 KB Output is correct
19 Correct 0 ms 344 KB Output is correct
20 Correct 1 ms 344 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 348 KB Output is correct
24 Correct 0 ms 348 KB Output is correct
25 Correct 0 ms 348 KB Output is correct
26 Correct 1 ms 348 KB Output is correct
27 Correct 0 ms 348 KB Output is correct
28 Correct 0 ms 348 KB Output is correct
29 Correct 0 ms 348 KB Output is correct
30 Correct 0 ms 348 KB Output is correct
31 Correct 1 ms 348 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 528 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 1876 KB Output is correct
2 Correct 7 ms 1876 KB Output is correct
3 Correct 7 ms 1840 KB Output is correct
4 Correct 8 ms 1884 KB Output is correct
5 Correct 7 ms 1948 KB Output is correct
6 Correct 7 ms 1884 KB Output is correct
7 Correct 7 ms 1688 KB Output is correct
8 Correct 4 ms 1372 KB Output is correct
9 Correct 5 ms 1112 KB Output is correct
10 Correct 6 ms 1628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 94 ms 15944 KB Output is correct
2 Correct 97 ms 15936 KB Output is correct
3 Correct 98 ms 16096 KB Output is correct
4 Correct 120 ms 15860 KB Output is correct
5 Correct 90 ms 16396 KB Output is correct
6 Correct 81 ms 15196 KB Output is correct
7 Correct 88 ms 15512 KB Output is correct
8 Correct 57 ms 10248 KB Output is correct
9 Correct 58 ms 11952 KB Output is correct
10 Correct 95 ms 15368 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 394 ms 52720 KB Output is correct
2 Correct 350 ms 52652 KB Output is correct
3 Correct 455 ms 51028 KB Output is correct
4 Correct 375 ms 51768 KB Output is correct
5 Correct 562 ms 53904 KB Output is correct
6 Correct 352 ms 48772 KB Output is correct
7 Correct 340 ms 47532 KB Output is correct
8 Correct 158 ms 33072 KB Output is correct
9 Correct 159 ms 32704 KB Output is correct
10 Correct 499 ms 47656 KB Output is correct
11 Correct 338 ms 53480 KB Output is correct
12 Correct 176 ms 35272 KB Output is correct