Submission #974511

# Submission time Handle Problem Language Result Execution time Memory
974511 2024-05-03T11:57:50 Z kilkuwu Palindromes (APIO14_palindrome) C++17
100 / 100
530 ms 57820 KB
#include <bits/stdc++.h>

#define nl '\n'

#ifdef LOCAL
#include "template/debug.hpp"
#else
#define dbg(...) ;
#define timer(...) ;
#endif

namespace hash {
using u64 = uint64_t;
using u32 = uint32_t;
constexpr int kSeed = -1;  // change this to fixed seed for predictable base
constexpr u64 kAlpha = 1000000007;  // the value is from 0 -> kAlphabet - 1
constexpr u64 kMod = (1ULL << 61) - 1;
static_assert(kMod - kAlpha > 2);
// randomly getting an odd base from kAlpha + 1 -> kMod - 1
u64 get_random_base(u64 not_this = -1) {
  std::mt19937_64 h_rng(
      kSeed == -1
          ? std::chrono::high_resolution_clock::now().time_since_epoch().count()
          : kSeed);
  auto rd = std::uniform_int_distribution<u64>(kAlpha + 2, kMod - 1);
  u64 base = rd(h_rng);
  base -= base % 2 == 0;
  while (base == not_this) {
    base = rd(h_rng);
    base -= base % 2 == 0;
  }
  return base;
}
u64 mul(u64 a, u64 b) {
  u64 l1 = (u32)a, h1 = a >> 32, l2 = (u32)b, h2 = b >> 32;
  u64 l = l1 * l2, m = l1 * h2 + l2 * h1, h = h1 * h2;
  u64 ret = (l & kMod) + (l >> 61) + (h << 3) + (m >> 29) + (m << 35 >> 3) + 1;
  ret = (ret & kMod) + (ret >> 61);
  ret = (ret & kMod) + (ret >> 61);
  return ret - 1;
}
u64 add(u64 a, u64 b) { return a += b, a -= (a >= kMod) * kMod; }
u64 sub(u64 a, u64 b) { return a + (a < b) * kMod - b; }
u64 p = get_random_base(), q = get_random_base(p);
std::vector<u64> pp(1, 1), qq(1, 1);
void ensure_pp_size(int size) {
  while ((int)pp.size() < size) pp.emplace_back(mul(pp.back(), p));
}
void ensure_qq_size(int size) {
  while ((int)qq.size() < size) qq.emplace_back(mul(qq.back(), q));
}
struct FwdHash {
  std::vector<u64> hf;
  FwdHash() = default;
  template <typename String>
  FwdHash(const String& s) : hf(s.size() + 1) {
    ensure_pp_size(s.size() + 1);
    for (int i = 0; i < (int)s.size(); i++) {
      hf[i + 1] = add(mul(hf[i], p), s[i] + 1);
    }
  }
  int size() const { return hf.size() - 1; }
  // NOTE: [l, r)
  u64 get_fwd(int l, int r) const { return sub(hf[r], mul(hf[l], pp[r - l])); }
  int operator[](int index) const { return get_fwd(index, index + 1) - 1; }
};
struct FBHash : FwdHash {
  std::vector<u64> hb;
  FBHash() = default;
  template <typename String>
  FBHash(const String& s) : FwdHash(s), hb(s.size() + 1) {
    for (int i = s.size() - 1; i >= 0; i--) {
      hb[i] = add(mul(hb[i + 1], p), s[i] + 1);
    }
  }
  // NOTE: [l, r)
  u64 get_bwd(int l, int r) const { return sub(hb[l], mul(hb[r], pp[r - l])); }
};
struct Hash2D {
  std::vector<std::vector<u64>> h;
  Hash2D() = default;
  template <typename String2D>
  Hash2D(const String2D& s)
      : h(s.size() + 1, std::vector<u64>(s[0].size() + 1)) {
    int n = s.size();
    int m = s[0].size();
    ensure_pp_size(n + 1);
    ensure_qq_size(m + 1);
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        h[i + 1][j + 1] = add(mul(h[i + 1][j], q), s[i][j] + 1);
      }
    }
    for (int i = 1; i <= n; i++) {
      for (int j = 1; j <= m; j++) {
        h[i][j] = add(mul(h[i - 1][j], p), h[i][j]);
      }
    }
  }
  // NOTE: [x, u) * [y, v)
  u64 get(int x, int y, int u, int v) {
    auto res = sub(h[u][v], mul(h[x][v], pp[u - x]));
    res = sub(res, mul(h[u][y], qq[v - y]));
    return add(res, mul(mul(h[x][y], pp[u - x]), qq[v - y]));
  }
};
// NOTE: [l1, h1.size()) and [l2, h2.size())
int longest_common_prefix(const FwdHash& h1, const FwdHash& h2, int l1,
                          int l2) {
  int lb = 0, rb = std::min(h1.size() - l1, h2.size() - l2) + 1;
  while (lb < rb - 1) {
    int mb = (lb + rb) / 2;
    if (h1.get_fwd(l1, l1 + mb) == h2.get_fwd(l2, l2 + mb)) {
      lb = mb;
    } else {
      rb = mb;
    }
  }
  return lb;
}
// NOTE: [0, r1) and [0, r2)
int longest_common_suffix(const FwdHash& h1, const FwdHash& h2, int r1,
                          int r2) {
  int lb = 0, rb = std::min(r1, r2) + 1;
  while (lb < rb - 1) {
    int mb = (lb + rb) / 2;
    if (h1.get_fwd(r1 - mb, r1) == h2.get_fwd(r2 - mb, r2)) {
      lb = mb;
    } else {
      rb = mb;
    }
  }
  return lb;
}
// NOTE: [l1, r1) and [l2, r2)
bool is_smaller(const FwdHash& h1, const FwdHash& h2, int l1, int r1, int l2,
                int r2) {
  int lcp = longest_common_prefix(h1, h2, l1, l2);
  int len1 = r1 - l1;
  int len2 = r2 - l2;
  int min_len = std::min(len1, len2);
  return lcp >= min_len ? len1 < len2 : h1[l1 + lcp] < h2[l2 + lcp];
}
}  // namespace hash

using hash::FBHash;
using hash::FwdHash;
using hash::Hash2D;

namespace suffarr {
std::vector<int> sa_is(const std::vector<int> &s, int upper) {
  int n = int(s.size());
  if (n == 0) return {};
  if (n == 1) return {0};
  if (n == 2) {
    if (s[0] < s[1]) {
      return {0, 1};
    } else {
      return {1, 0};
    }
  }
  std::vector<int> sa(n);
  std::vector<bool> ls(n);
  for (int i = n - 2; i >= 0; i--)
    ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
  std::vector<int> sl(upper + 1), ss(upper + 1);
  for (int i = 0; i < n; i++) {
    if (!ls[i])
      ss[s[i]]++;
    else
      sl[s[i] + 1]++;
  }
  for (int i = 0; i <= upper; i++) {
    ss[i] += sl[i];
    if (i < upper) sl[i + 1] += ss[i];
  }
  auto induce = [&](const std::vector<int> &lms) {
    std::fill(sa.begin(), sa.end(), -1);
    std::vector<int> bb(upper + 1);
    std::copy(ss.begin(), ss.end(), bb.begin());
    for (auto d : lms) {
      if (d == n) continue;
      sa[bb[s[d]]++] = d;
    }
    std::copy(sl.begin(), sl.end(), bb.begin());
    sa[bb[s[n - 1]]++] = n - 1;
    for (int i = 0; i < n; i++) {
      int v = sa[i];
      if (v >= 1 && !ls[v - 1]) sa[bb[s[v - 1]]++] = v - 1;
    }
    std::copy(sl.begin(), sl.end(), bb.begin());
    for (int i = n - 1; i >= 0; i--) {
      int v = sa[i];
      if (v >= 1 && ls[v - 1]) sa[--bb[s[v - 1] + 1]] = v - 1;
    }
  };
  std::vector<int> lmp(n + 1, -1);
  int m = 0;
  for (int i = 1; i < n; i++) {
    if (!ls[i - 1] && ls[i]) lmp[i] = m++;
  }
  std::vector<int> lms;
  lms.reserve(m);
  for (int i = 1; i < n; i++) {
    if (!ls[i - 1] && ls[i]) lms.push_back(i);
  }
  induce(lms);
  if (m) {
    std::vector<int> sorted_lms;
    sorted_lms.reserve(m);
    for (int v : sa) {
      if (lmp[v] != -1) sorted_lms.push_back(v);
    }
    std::vector<int> rec_s(m);
    int rec_upper = 0;
    rec_s[lmp[sorted_lms[0]]] = 0;
    for (int i = 1; i < m; i++) {
      int l = sorted_lms[i - 1], r = sorted_lms[i];
      int end_l = (lmp[l] + 1 < m) ? lms[lmp[l] + 1] : n;
      int end_r = (lmp[r] + 1 < m) ? lms[lmp[r] + 1] : n;
      bool same = true;
      if (end_l - l != end_r - r) {
        same = false;
      } else {
        while (l < end_l) {
          if (s[l] != s[r]) break;
          l++;
          r++;
        }
        if (l == n || s[l] != s[r]) same = false;
      }
      if (!same) rec_upper++;
      rec_s[lmp[sorted_lms[i]]] = rec_upper;
    }
    auto rec_sa = sa_is(rec_s, rec_upper);
    for (int i = 0; i < m; i++) {
      sorted_lms[i] = lms[rec_sa[i]];
    }
    induce(sorted_lms);
  }
  return sa;
}

std::vector<int> suffix_array(const std::vector<int> &s, int upper) {
  assert(0 <= upper);
  for (int d : s) assert(0 <= d && d <= upper);
  return suffarr::sa_is(s, upper);
}

template <class T>
std::vector<int> suffix_array(const std::vector<T> &s) {
  int n = int(s.size());
  std::vector<int> ord(n);
  iota(ord.begin(), ord.end(), 0);
  sort(ord.begin(), ord.end(), [&](int l, int r) { return s[l] < s[r]; });
  std::vector<int> s2(n);
  int now = 0;
  for (int i = 0; i < n; i++) {
    if (i && s[ord[i - 1]] != s[ord[i]]) now++;
    s2[ord[i]] = now;
  }
  return suffarr::sa_is(s2, now);
}

std::vector<int> suffix_array(const std::string &s) {
  int n = int(s.size());
  std::vector<int> s2(n);
  for (int i = 0; i < n; i++) s2[i] = s[i];
  return suffarr::sa_is(s2, 255);
}

template <class T>
std::vector<int> lcp_array(const std::vector<T> &s,
                           const std::vector<int> &sa) {
  int n = int(s.size());
  assert(n >= 1);
  std::vector<int> rnk(n);
  for (int i = 0; i < n; i++) rnk[sa[i]] = i;
  std::vector<int> lcp(n - 1);
  int h = 0;
  for (int i = 0; i < n; i++) {
    if (h > 0) h--;
    if (rnk[i] == 0) continue;
    int j = sa[rnk[i] - 1];
    for (; j + h < n && i + h < n; h++) {
      if (s[j + h] != s[i + h]) break;
    }
    lcp[rnk[i] - 1] = h;
  }
  return lcp;
}

std::vector<int> lcp_array(const std::string &s, const std::vector<int> &sa) {
  int n = int(s.size());
  std::vector<int> s2(n);
  for (int i = 0; i < n; i++) s2[i] = s[i];
  return lcp_array(s2, sa);
}
}  // namespace suffarr

using suffarr::suffix_array;
using suffarr::lcp_array;

template<typename T, typename F>
struct SparseTable {
  std::vector<std::vector<T>> t;

  SparseTable() {}
  SparseTable(const std::vector<T>& a) : t(std::__lg(a.size()) + 1, std::vector<T>(a)) {
    for (int k = 0; k + 1 < (int) t.size(); k++)
      for (int i = 0; i + (1 << k) < (int) a.size(); i++)
        t[k + 1][i] = F()(t[k][i], t[k][i + (1 << k)]);
  }

  // NOTE: [l, r)
  T query(int l, int r) {
    int k = std::__lg(r - l);
    return F()(t[k][l], t[k][r - (1 << k)]);
  }
};

template<typename T>
struct MinMerge {
  T operator()(const T& a, const T& b) {
    return std::min<T>(a, b);
  }
};

template <typename T>
using MinSparseTable = SparseTable<T, MinMerge<T>>;

signed main() {
  std::ios::sync_with_stdio(false);
  std::cin.tie(nullptr);

  std::string s;
  std::cin >> s;
  int n = s.size();
  FBHash hasher(s);

  // we get all unique palindromes

  struct Palindrome {
    int m1, m2, len;
  };

  std::set<uint64_t> palin_hashes;
  std::vector<Palindrome> unique_palins;

  auto is_palindrome = [&](int l, int r) -> bool {
    return hasher.get_fwd(l, r) == hasher.get_bwd(l, r);
  };

  auto add_all = [&](int m1, int m2) {
    int lb = 0, rb = std::min(m1 + 1, n - m2) + 1;

    while (lb < rb - 1) {
      int mb = (lb + rb) / 2;
      if (is_palindrome(m1 - mb + 1, m2 + mb)) {
        lb = mb;
      } else {
        rb = mb;
      }
    }

    int len = lb;
    while (len > 0) {
      auto hsh = hasher.get_fwd(m1 - len + 1, m2 + len);
      auto it = palin_hashes.insert(hsh);
      if (it.second == false) break;
      unique_palins.push_back({m1, m2, len});
      len--;
    }
  };

  for (int i = 0; i < n; i++) {
    add_all(i, i);
    if (i + 1 < n) {
      add_all(i, i + 1);
    }
  }

  auto sa = suffix_array(s);
  auto lcp = lcp_array(s, sa);

  std::vector<int> pos(n);

  for (int i = 0; i < n; i++) {
    pos[sa[i]] = i;
  }

  MinSparseTable<int> tab(lcp);

  dbg(sa);
  dbg(lcp);

  /*
  2 bbbc 
  1 bbc
  0 bc
    c
  */

  auto count_occurrence = [&](int l, int r) -> int {
    int len = r - l;

    l = pos[l];
    int upper = l;
    int lb = 0, rb = l - 1;
    
    while (lb <= rb) {
      int mb = (lb + rb) / 2;
      int val = tab.query(mb, l);
      if (val >= len) {
        upper = mb;
        rb = mb - 1;
      } else {
        lb = mb + 1;
      }
    }

    int lower = l;
    lb = l + 1, rb = n - 1;

    while (lb <= rb) {
      int mb = (lb + rb) / 2;
      int val = tab.query(l, mb);

      if (val >= len) {
        lower = mb;
        lb = mb + 1;
      } else {
        rb = mb - 1;
      }
    }

    dbg(lower, upper);
    return lower - upper + 1;
  };

  // b, b, b, c


  int64_t ans = -1;
  for (auto [m1, m2, len] : unique_palins) {
    int lb = m1 - len + 1, rb = m2 + len;
    len = rb - lb;
    dbg(lb, rb);
    ans = std::max(ans, (int64_t) len * count_occurrence(lb, rb));
  }

  std::cout << ans << nl;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 344 KB Output is correct
4 Correct 0 ms 420 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 1 ms 352 KB Output is correct
16 Correct 0 ms 352 KB Output is correct
17 Correct 0 ms 356 KB Output is correct
18 Correct 1 ms 348 KB Output is correct
19 Correct 0 ms 360 KB Output is correct
20 Correct 1 ms 360 KB Output is correct
21 Correct 1 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 1 ms 360 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
25 Correct 0 ms 348 KB Output is correct
26 Correct 1 ms 348 KB Output is correct
27 Correct 0 ms 348 KB Output is correct
28 Correct 0 ms 348 KB Output is correct
29 Correct 1 ms 352 KB Output is correct
30 Correct 1 ms 348 KB Output is correct
31 Correct 1 ms 344 KB Output is correct
32 Correct 1 ms 344 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 2 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 1876 KB Output is correct
2 Correct 7 ms 1872 KB Output is correct
3 Correct 7 ms 1880 KB Output is correct
4 Correct 7 ms 1884 KB Output is correct
5 Correct 7 ms 2052 KB Output is correct
6 Correct 7 ms 1884 KB Output is correct
7 Correct 10 ms 1856 KB Output is correct
8 Correct 4 ms 1372 KB Output is correct
9 Correct 6 ms 1372 KB Output is correct
10 Correct 6 ms 1884 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 114 ms 17108 KB Output is correct
2 Correct 99 ms 17160 KB Output is correct
3 Correct 103 ms 16904 KB Output is correct
4 Correct 132 ms 16888 KB Output is correct
5 Correct 92 ms 17668 KB Output is correct
6 Correct 85 ms 16244 KB Output is correct
7 Correct 89 ms 16392 KB Output is correct
8 Correct 52 ms 11272 KB Output is correct
9 Correct 59 ms 12496 KB Output is correct
10 Correct 98 ms 16364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 481 ms 54116 KB Output is correct
2 Correct 454 ms 55444 KB Output is correct
3 Correct 473 ms 54396 KB Output is correct
4 Correct 457 ms 54896 KB Output is correct
5 Correct 530 ms 57820 KB Output is correct
6 Correct 411 ms 53648 KB Output is correct
7 Correct 375 ms 52104 KB Output is correct
8 Correct 174 ms 37804 KB Output is correct
9 Correct 174 ms 36600 KB Output is correct
10 Correct 490 ms 50108 KB Output is correct
11 Correct 401 ms 55748 KB Output is correct
12 Correct 210 ms 38356 KB Output is correct