Submission #969439

#TimeUsernameProblemLanguageResultExecution timeMemory
969439kilkuwuBoat (APIO16_boat)C++17
9 / 100
228 ms6484 KiB
#include <bits/stdc++.h> #define nl '\n' #ifdef LOCAL #include "template/debug.hpp" #else #define dbg(...) ; #define timer(...) ; #endif template <int md> struct Modular { int v; constexpr Modular() : v(0) {} template <typename T> static inline int normalize(const T& x) { int res = -md <= x && x < md ? static_cast<int>(x) : static_cast<int>(x % md); return res + (res < 0) * md; } static constexpr int mod() { return md; } template <typename U> Modular(const U& x) : v(normalize(x)) {} const int& operator()() const { return v; } template <typename U> explicit operator U() const { return static_cast<U>(v); } using M = Modular; constexpr static inline M _raw(int x) { static_assert(x >= 0 && x < md); M res; res.v = x; return res; } template <typename U> friend std::enable_if_t<std::is_integral_v<U>, M> power(M b, U e) { assert(e >= 0); M ans = 1; while (e) { if (e & 1) ans *= b; b *= b; e >>= 1; } return ans; } M inv() const { M res = power(*this, md - 2); return res; } M& operator+=(const M& y) { return v += y.v, v -= (v >= md) * md, *this; } M& operator-=(const M& y) { return v -= y.v, v += (v < 0) * md, *this; } M& operator*=(const M& y) { return v = (int64_t) v * y.v % md, *this; } M& operator/=(const M& y) { return *this *= y.inv(); } M& operator++() { return *this += _raw(1); } M& operator--() { return *this -= _raw(1); } M operator++(int) { M res(*this); return *this += _raw(1), res; } M operator--(int) { M res(*this); return *this -= _raw(1), res; } M operator-() const { return M(-v); } friend bool operator==(const M& x, const M& y) { return x.v == y.v; } friend bool operator<(const M& x, const M& y) { return x.v < y.v; } friend bool operator>(const M& x, const M& y) { return x.v > y.v; } friend bool operator<=(const M& x, const M& y) { return x.v <= y.v; } friend bool operator>=(const M& x, const M& y) { return x.v >= y.v; } friend bool operator!=(const M& x, const M& y) { return x.v != y.v; } template <typename Istream> friend Istream& operator>>(Istream& is, M& y) { int64_t x; is >> x; y.v = y.normalize(x); return is; } template <typename Ostream> friend Ostream& operator<<(Ostream& os, const M& y) { return os << y.v; } friend M operator+(const M& x, const M& y) { return M(x) += y; } friend M operator-(const M& x, const M& y) { return M(x) -= y; } friend M operator*(const M& x, const M& y) { return M(x) *= y; } friend M operator/(const M& x, const M& y) { return M(x) /= y; } }; constexpr int md = 1e9 + 7; using Mint = Modular<md>; signed main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); int n; std::cin >> n; std::vector<int> a(n), b(n); for (int i = 0; i < n; i++) std::cin >> a[i] >> b[i], b[i]++; std::vector<int> vals(a.begin(), a.end()); vals.insert(vals.end(), b.begin(), b.end()); std::sort(vals.begin(), vals.end()); vals.erase(std::unique(vals.begin(), vals.end()), vals.end()); dbg(vals); int num_segments = vals.size() - 1; for (int i = 0; i < n; i++) { a[i] = std::lower_bound(vals.begin(), vals.end(), a[i]) - vals.begin(); b[i] = std::lower_bound(vals.begin(), vals.end(), b[i]) - vals.begin(); dbg(a[i], b[i]); } std::vector<std::vector<Mint>> prepared(num_segments, std::vector<Mint>(n + 1)); for (int i = 0; i < num_segments; i++) { int len = vals[i + 1] - vals[i] - 1; prepared[i][0] = 1; for (int j = 0; j < n; j++) { prepared[i][j + 1] = prepared[i][j] * (len - j) / (j + 1); } for (int j = 0; j < n; j++) { prepared[i][j + 1] += prepared[i][j]; } } std::vector<std::vector<Mint>> dp(n + 1, std::vector<Mint>(num_segments + 1)); std::vector<std::vector<Mint>> ff(n + 1, std::vector<Mint>(num_segments + 1)); dp[n].back() = 1; for (int j = 0; j <= num_segments; j++) { ff[n][j] = 1; } Mint ans = 0; for (int i = n - 1; i >= 0; i--) { for (int j = num_segments - 1; j >= 0; j--) { if (a[i] <= j && j < b[i]) { int cnt = 0; for (int k = i; k < n; k++) { cnt += a[k] <= j && j < b[k]; int rem = cnt - 1; Mint mul = prepared[j][rem]; dbg(i, j, k, mul, rem, ff[k + 1][j + 1], mul * ff[k + 1][j + 1]); dp[i][j] += ff[k + 1][j + 1] * mul; } } ans += dp[i][j]; dbg(i, j, dp[i][j]); ff[i][j] = ff[i][j + 1] + dp[i][j]; } } std::cout << ans << nl; // 4 // 4 7 }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...