# | Time | Username | Problem | Language | Result | Execution time | Memory |
---|---|---|---|---|---|---|---|
96905 | liwi | Paint By Numbers (IOI16_paint) | C++11 | 0 ms | 0 KiB |
This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
typedef tree<pair<int,int>, null_type, less<pair<int,int>>, rb_tree_tag,tree_order_statistics_node_update> ordered_set;
#define scan(x) do{while((x=getchar())<'0'); for(x-='0'; '0'<=(_=getchar()); x=(x<<3)+(x<<1)+_-'0');}while(0)
char _;
#define complete_unique(a) a.erase(unique(a.begin(),a.end()),a.end())
#define all(a) a.begin(),a.end()
#define println printf("\n");
#define readln(x) getline(cin,x);
#define pb push_back
#define endl "\n"
#define INT_INF 0x3f3f3f3f
#define LL_INF 0x3f3f3f3f3f3f3f3f
#define MOD 1000000007
#define mp make_pair
#define fastio cin.tie(0); cin.sync_with_stdio(0);
#define MAXN 200005
#define MAXK 101
typedef unsigned long long ull;
typedef long long ll;
typedef long double ld;
typedef unordered_map<int,int> umii;
typedef pair<int,int> pii;
typedef pair<double,double> pdd;
typedef pair<ll,ll> pll;
typedef pair<int,pii> triple;
typedef int8_t byte;
mt19937 g1;
int randint(int a, int b){return uniform_int_distribution<int>(a, b)(g1);}
ll randlong(ll a,ll b){return uniform_int_distribution<long long>(a, b)(g1);}
ll gcd(ll a, ll b){return b == 0 ? a : gcd(b, a % b);}
ll lcm(ll a, ll b){return a*b/gcd(a,b);}
ll fpow(ll b, ll exp, ll mod){if(exp == 0) return 1;ll t = fpow(b,exp/2,mod);if(exp&1) return t*t%mod*b%mod;return t*t%mod;}
ll divmod(ll i, ll j, ll mod){i%=mod,j%=mod;return i*fpow(j,mod-2,mod)%mod;}
int len,psa[MAXN],test[MAXK]={3},need[MAXN];
string res;
bool forw[MAXN][MAXK],backw[MAXN][MAXK],white[MAXN],eforr[MAXN][MAXK];
bitset<MAXN> blocks[MAXK],possible;
inline void print(bitset<MAXN> &possible){
for(int i=1; i<=len; i++)
printf("%d",possible[i]?1:0);
println;
}
string solve_puzzle(string s, int K, int c[MAXK]){
res = "";
// possible.reset();
// memset(forw,0,sizeof forw);
// memset(backw,0,sizeof backw);
// memset(white,0,sizeof white);
len = (int)s.size();
for(int i=1; i<=s.size(); i++){
psa[i] = psa[i-1]+(s[i-1]=='X'||s[i-1]=='.');
need[i] = need[i-1]+(s[i-1]=='X');
}
for(int i=1; i<=K; i++){
// blocks[i].reset();
for(int k=1; k<=c[i-1]; k++)
blocks[i][k] = true;
// print(blocks[i]);
}
forw[0][0] = backw[s.size()+1][0] = true;
for(int i=1; i<=s.size(); i++){
forw[i][0] = need[i]==0;
if(i == 9){
// printf("\n");
}
for(int k=1; k<=K; k++){
if(!(i == c[k-1] && k == 1) && i-c[k-1]-1 < 0) continue;
forw[i][k] = forw[i-1][k];
int cur_len = c[k-1], valid = (psa[i]-psa[i-cur_len])==cur_len;
if(valid && ((k == 1 && need[i-cur_len] == 0) || (k != 1 && i > cur_len && s[i-cur_len-1] != 'X' && forw[i-cur_len-1][k-1]))){
forw[i][k] = eforr[i][k] = true;
// possible|=(blocks[k]<<(i-cur_len));
// print(blocks[k]);
// print(possible);
}
}
}
for(int i=(int)s.size(); i>=1; i--){
backw[i][0] = need[len]-need[i-1]==0;
if(i == 7){
// printf("\n");
}
for(int k=1; k<=K; k++){
if(!(i+c[K-k]-1 <= s.size() && k == 1) && i+c[K-k]+1 > s.size()) continue;
backw[i][k] = backw[i+1][k];
int idx = K-k+1, cur_len = c[idx-1], valid = (psa[i+cur_len-1]-psa[i-1])==cur_len;
if(valid && ((k == 1 && (i+cur_len > len || need[len]-need[i+cur_len-1] == 0)) || (k != 1 && s.size()-i+1 > cur_len && s[i+cur_len-1] != 'X' && backw[i+cur_len+1][k-1]))){
backw[i][k] = true;
if(i >= 2 && s[i-2] != 'X' && forw[i-2][K-k]){
if(i == 4){
// printf("\n");
}
// print(blocks[idx]);
possible|=(blocks[idx]<<(i-1));
// print(possible);
if(possible[4]){
// printf("\n");
}
}
}
}
}
for(int i=(int)s.size(); i>=1; i--)
for(int k=1; k<=K; k++)
backw[i][k]|=backw[i+1][k];
for(int i=1; i<=s.size(); i++){
for(int k=1; k<=K;k ++){
if(eforr[i][k] && ((i==s.size() && k == K) || (s[i] != 'X' && backw[i+2][K-k]))){
possible|=(blocks[k]<<(i-c[k-1]));
// print(possible);
if(possible[9]){
// printf("\n");
}
}
}
}
for(int i=1; i<=s.size(); i++)
for(int k=1; k<=K; k++)
forw[i][k]|=forw[i-1][k];
for(int i=1; i<=s.size(); i++){
if(i == 5){
// printf("\n");
}
for(int k=0; k<=K; k++){
bool can_white = s[i-1]!='X'&&forw[i-1][k]&&backw[i+1][K-k];
// if(k == 0) can_white = s[i-1]!='X'&&(need[i-1]==0)&&backw[i+1][K-k];
// else if(k == K) can_white = s[i-1]!='X'&&forw[i-1][k]&&(need[len]-need[i]==0);
if(can_white){
white[i] = true;
break;
}
}
}
for(int i=1; i<=s.size(); i++){
if(possible[i] && white[i]) res+="?";
else if(possible[i]) res+="X";
else res+="_";
}
return res;
}