This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
/**
* Assume there is some hard route that goes from vertex
* u to vertex v. Let the node that the path from u to v and the
* furthest node from the hard route meet be node x. Use rerooting
* DP to calculate the hardest route and the # of such hardest routes
* for every node x.
*
* Time Complexity: O(n log(n))
*/
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
cin.tie(0) -> sync_with_stdio(0);
int n;
cin >> n;
vector<vector<int>> adj(n);
for (int i = 1; i < n; i++) {
int x, y;
cin >> x >> y;
--x, --y;
adj[x].push_back(y);
adj[y].push_back(x);
}
vector<int> max_length(n), path_count(n);
auto dfs = [&](int u, int p, auto&& dfs) -> void {
/**
* Calculates the longest path from vertex u,
* and the number of such paths.
*/
max_length[u] = 0;
path_count[u] = 1;
for (int v : adj[u]) if (v != p) {
dfs(v, u, dfs);
if (max_length[u] < max_length[v] + 1) {
max_length[u] = max_length[v] + 1;
path_count[u] = path_count[v];
} else if (max_length[v] + 1 == max_length[u]) {
path_count[u] += path_count[v];
}
}
};
dfs(0, -1, dfs);
ll hard = 0, cnt = 1;
auto dfs2 = [&](int u, int p, ll parDist, ll parCnt,
auto&& dfs2) -> void {
/**
* Performs the rerooting, to count the hardest
* path and the # of such paths at this vertex.
*/
vector<array<ll, 2>> paths; // {distance, count}
if (u > 0 || (int) adj[u].size() == 1) {
paths.push_back({parDist, parCnt});
}
for (int v : adj[u]) if (v != p) {
paths.push_back({max_length[v] + 1, path_count[v]});
}
sort(paths.begin(), paths.end(), greater<>());
if ((int) adj[u].size() >= 3) { // can form a nonzero hard route
/**
* Let the 3 longest path lengths be a, b, c, with a > b > c.
* The optimal hard route "hardness" is a * (b + c).
*/
ll a = paths[0][0], b = paths[1][0], c = paths[2][0];
ll cur = a * (b + c), num = 0, ties = 0;
for (auto [k, v] : paths) {
if (k == c) ties += v;
}
// case 1: all are distinct.
if (a != b && b != c) {
num = paths[1][1] * ties;
}
// case 2: all are the same.
else if (a == b && b == c) {
num = ties * ties;
for (auto [k, v] : paths) {
if (k == a) num -= v * v;
}
num /= 2; // avoiding double counting
}
// case 3: first two are the same.
else if (a == b) {
num = (paths[0][1] + paths[1][1]) * ties;
}
// case 4: last two are the same.
else {
num = ties * ties;
for (auto [k, v] : paths) {
if (k == c) num -= v * v;
}
num /= 2;
}
if (hard < cur) {
hard = cur, cnt = num;
} else if (hard == cur) {
cnt += num;
}
}
// processing parent dist and parent count.
ll l1 = 0, l2 = 0, cnt1 = 0, cnt2 = 0;
for (auto [k, v] : paths) {
if (k + 1 > l1) {
swap(l1, l2);
swap(cnt1, cnt2);
l1 = k + 1, cnt1 = v;
} else if (k + 1 == l1) {
cnt1 += v;
} else if (k + 1 > l2) {
l2 = k + 1, cnt2 = v;
} else if (k + 1 == l2) {
cnt2 += v;
}
}
for (int v : adj[u]) if (v != p) {
// using the best parent hardness and parent count possible.
if (max_length[v] + 2 == l1) {
(path_count[v] == cnt1) ? dfs2(v, u, l2, cnt2, dfs2) :
dfs2(v, u, l1, cnt1 - path_count[v], dfs2);
} else {
dfs2(v, u, l1, cnt1, dfs2);
}
}
}; dfs2(0, -1, 0, 1, dfs2);
cout << hard << ' ' << cnt << '\n';
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |