# | Time | Username | Problem | Language | Result | Execution time | Memory |
---|---|---|---|---|---|---|---|
965411 | MisterReaper | Harbingers (CEOI09_harbingers) | C++17 | 90 ms | 19900 KiB |
This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <bits/stdc++.h>
using i64 = long long;
constexpr int maxN = 1E5 + 5;
constexpr i64 INF = 1E18;
constexpr __int128 ONE = 1;
int N;
std::vector<std::pair<int, int>> adj[maxN];
int S[maxN], V[maxN], par[maxN], D[maxN];
i64 dp[maxN];
struct line {
i64 a, b;
line() : a(0), b(0) {}
line(i64 _a, i64 _b) : a(_a), b(_b) {}
i64 eval(i64 x) {
return 1LL * a * x + b;
}
long double intersect(line rhs) {
return (long double)(rhs.b - b) / (a - rhs.a);
}
};
int sz;
line dq[maxN];
int size() { return sz; }
i64 query(i64 x) {
int l = 0, r = size() - 1;
while(r - l > 3) {
int m = (l + r) >> 1;
if(dq[m].intersect(dq[m + 1]) <= x) {
l = m;
} else {
r = m;
}
}
i64 res = INF;
for(int i = l; i <= r; i++) {
res = std::min(res, dq[i].eval(x));
}
return res;
}
int removep(line L) {
if(size() < 2 || L.intersect(dq[size() - 1]) >= dq[size() - 1].intersect(dq[size() - 2])) {
return size();
}
int l = 1, r = size() - 1;
while(l < r) {
int m = (l + r) >> 1;
if(L.intersect(dq[m]) < dq[m].intersect(dq[m - 1])) {
r = m;
} else {
l = m + 1;
}
}
return l;
}
void dfs(int v) {
int pmax, ppos;
line pline;
if(v != 1) {
dp[v] = query(V[v]) + 1LL * D[v] * V[v] + S[v];
line l = {-D[v], dp[v]};
pmax = sz;
ppos = sz = removep(l);
pline = dq[ppos];
dq[sz++] = l;
} else {
dq[sz++] = {0, 0};
}
for(auto [u, w] : adj[v]) {
if(u == par[v]) {
continue;
}
D[u] = D[v] + w;
par[u] = v;
dfs(u);
}
if(v != 1) {
sz = pmax;
dq[ppos] = pline;
}
}
signed main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cin >> N;
for(int i = 1; i <= N - 1; i++) {
int A, B, W;
std::cin >> A >> B >> W;
adj[A].emplace_back(B, W);
adj[B].emplace_back(A, W);
}
for(int i = 2; i <= N; i++) {
std::cin >> S[i] >> V[i];
}
std::fill_n(&dp[1], N, INF);
dp[1] = 0;
par[1] = 1;
dfs(1);
for(int i = 2; i <= N; i++) {
std::cout << dp[i] << " \n"[i == N];
}
return 0;
}
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |