Submission #964602

#TimeUsernameProblemLanguageResultExecution timeMemory
964602kilkuwuHexagonal Territory (APIO21_hexagon)C++17
36 / 100
51 ms85184 KiB
#include "hexagon.h" #include <bits/stdc++.h> template <int md> struct Modular { int v; constexpr Modular() : v(0) {} template <typename T> static inline int normalize(const T& x) { int res = -md <= x && x < md ? static_cast<int>(x) : static_cast<int>(x % md); return res + (res < 0) * md; } static constexpr int mod() { return md; } template <typename U> Modular(const U& x) : v(normalize(x)) {} const int& operator()() const { return v; } template <typename U> explicit operator U() const { return static_cast<U>(v); } using M = Modular; constexpr static inline M _raw(int x) { static_assert(x >= 0 && x < md); M res; res.v = x; return res; } template <typename U> friend std::enable_if_t<std::is_integral_v<U>, M> power(M b, U e) { assert(e >= 0); M ans = 1; while (e) { if (e & 1) ans *= b; b *= b; e >>= 1; } return ans; } M inv() const { M res = power(*this, md - 2); return res; } M& operator+=(const M& y) { return v += y.v, v -= (v >= md) * md, *this; } M& operator-=(const M& y) { return v -= y.v, v += (v < 0) * md, *this; } M& operator*=(const M& y) { return v = (int64_t) v * y.v % md, *this; } M& operator/=(const M& y) { return *this *= y.inv(); } M& operator++() { return *this += _raw(1); } M& operator--() { return *this -= _raw(1); } M operator++(int) { M res(*this); return *this += _raw(1), res; } M operator--(int) { M res(*this); return *this -= _raw(1), res; } M operator-() const { return M(-v); } friend bool operator==(const M& x, const M& y) { return x.v == y.v; } friend bool operator<(const M& x, const M& y) { return x.v < y.v; } friend bool operator>(const M& x, const M& y) { return x.v > y.v; } friend bool operator<=(const M& x, const M& y) { return x.v <= y.v; } friend bool operator>=(const M& x, const M& y) { return x.v >= y.v; } friend bool operator!=(const M& x, const M& y) { return x.v != y.v; } template <typename Istream> friend Istream& operator>>(Istream& is, M& y) { int64_t x; is >> x; y.v = y.normalize(x); return is; } template <typename Ostream> friend Ostream& operator<<(Ostream& os, const M& y) { return os << y.v; } friend M operator+(const M& x, const M& y) { return M(x) += y; } friend M operator-(const M& x, const M& y) { return M(x) -= y; } friend M operator*(const M& x, const M& y) { return M(x) *= y; } friend M operator/(const M& x, const M& y) { return M(x) /= y; } }; constexpr int md = 1e9 + 7; using Mint = Modular<md>; constexpr int A = 4200; int grid[A][A]; std::bitset<A> is_road[A]; std::pair<int, int> q[A * A]; int sz = 0, fi = 0; std::bitset<A> vis[A]; int dist[A][A]; const std::vector<std::pair<int, int>> dxy = { {-1, 0}, {0, 1}, {1, 1}, {1, 0}, {0, -1}, {-1, -1} }; int draw_territory(int N, int a, int b, std::vector<int> D, std::vector<int> L) { #define int int64_t memset(grid, -1, sizeof(grid)); if (N == 3) { Mint answer = 0; Mint size = L[0] + 1; Mint number = size * (size + 1) / 2; answer = size * (size + 1) * (size * 2 + 1) / 6; answer -= number; answer = number * a + b * answer; return (int) answer; } int points_on_edges = 0; std::vector<std::pair<int, int>> instruction; for (int i = 0; i < N; i++) { points_on_edges += L[i]; if (instruction.empty() || instruction.back().first != D[i]) { instruction.emplace_back(D[i], L[i]); } else { instruction.back().second += L[i]; } } if (instruction.back().first == instruction.front().first) { instruction.front().second += instruction.back().second; instruction.pop_back(); } std::vector<std::pair<int, int>> points; points.emplace_back(0, 0); for (int i = 0; i < N; i++) { auto [dx, dy] = dxy[instruction[i].first - 1]; int mul = instruction[i].second; auto [x, y] = points.back(); points.emplace_back(x + dx * mul, y + dy * mul); } int S2 = 0; points.emplace_back(points.front()); for (int i = 0; i + 1 < (int) points.size(); i++) { S2 += points[i].first * points[i + 1].second - points[i + 1].first * points[i].second; } S2 = std::abs(S2); // S2 = 2a + b - 1 // 2a = S2 - b + 1 int a2 = S2 - points_on_edges + 2; a2 /= 2; a2 += points_on_edges; Mint ans = a2; ans *= a; return (int) ans; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...