#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
#define sz(x) int((x).size())
#define fi first
#define se second
typedef long long ll;
typedef pair<int, int> ii;
template<class X, class Y>
inline bool maximize(X &x, const Y &y) {return (x < y ? x = y, 1 : 0);}
template<class X, class Y>
inline bool minimize(X &x, const Y &y) {return (x > y ? x = y, 1 : 0);}
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
int Random(int l, int r) {
return uniform_int_distribution<int>(l, r)(rng);
}
const int MAXN = 100005;
class DisjointSet {
private:
vector<int> lab, id;
public:
DisjointSet(int _n = 0) {
lab.assign(_n + 7, -1);
id.resize(_n + 7);
for (int i = 0; i <= _n; ++i)
id[i] = i;
}
int find(int u) {
return (lab[u] < 0) ? u : (lab[u] = find(lab[u]));
}
void updateID(int u, int newID) {
id[find(u)] = newID;
}
bool join(int u, int v) {
u = find(u), v = find(v);
if(u == v)
return (false);
if(lab[u] > lab[v])
swap(u, v);
lab[u] += lab[v];
lab[v] = u;
return (true);
}
int getSize(int u) {
return -lab[find(u)];
}
int getID(int u) {
return id[find(u)];
}
} dsu;
struct Edge {
int u, v, w;
} edge[2 * MAXN];
struct SegNode {
int cnt, L, R;
} seg[50 * MAXN];
vector<int> idw;
vector<ii> adj[MAXN], adjp[3 * MAXN];
int depth2[3 * MAXN], nodew[3 * MAXN], fstOk[3 * MAXN], cntNode[3 * MAXN], cntEdge[3 * MAXN], P2[3 * MAXN][19];
int version[MAXN], tIn[MAXN], tOut[MAXN], tour[MAXN], depth[MAXN], P[MAXN][17], Pw[MAXN][17];
int deg[MAXN], pa[MAXN], cntLeaf[MAXN], tmp[MAXN], cntChild[MAXN], maxw, nTree, nNode, numNode, numEdge;
bool dp[1003][1003], dx[MAXN], check_sub1, check_sub2;
int cntTime(0);
void preDfs(int u) {
tIn[u] = ++cntTime;
tour[cntTime] = u;
++tmp[tIn[u]];
for (int it = 0; it < sz(adj[u]); ++it) {
int v(adj[u][it].fi), id(adj[u][it].se);
if(v != P[u][0]) {
depth[v] = depth[u] + 1;
P[v][0] = u;
Pw[v][0] = id;
preDfs(v);
--tmp[tIn[u]];
}
}
tOut[u] = cntTime;
}
int lca(int u, int v) {
if(depth[u] < depth[v])
swap(u, v);
for (int i1 = depth[u] - depth[v]; i1 > 0; i1 ^= i1 & -i1) {
int i = __builtin_ctz(i1);
u = P[u][i];
}
if(u == v)
return u;
for (int i = 31 - __builtin_clz(depth[u]); i >= 0; --i) {
if(P[u][i] != P[v][i])
u = P[u][i], v = P[v][i];
}
return P[u][0];
}
int build(int l, int r, int tmp[]) {
if(l == r) {
seg[++nTree].cnt = tmp[l];
return nTree;
}
int cur(++nTree), mid = (l + r) >> 1;
seg[cur].L = build(l, mid, tmp);
seg[cur].R = build(mid + 1, r, tmp);
seg[cur].cnt = seg[seg[cur].L].cnt + seg[seg[cur].R].cnt;
return cur;
}
int update(int oldID, int l, int r, int pos, int val) {
if(l == r) {
seg[++nTree] = seg[oldID];
seg[nTree].cnt += val;
return nTree;
}
int cur(++nTree), mid = (l + r) >> 1;
seg[cur] = seg[oldID];
if(pos <= mid) {
seg[cur].L = update(seg[oldID].L, l, mid, pos, val);
} else {
seg[cur].R = update(seg[oldID].R, mid + 1, r, pos, val);
}
seg[cur].cnt = seg[seg[cur].L].cnt + seg[seg[cur].R].cnt;
return cur;
}
int query(int id, int l, int r, int u, int v) {
if(u <= l && r <= v)
return seg[id].cnt;
int mid = (l + r) >> 1, res(0);
if(mid >= u)
res += query(seg[id].L, l, mid, u, v);
if(mid + 1 <= v)
res += query(seg[id].R, mid + 1, r, u, v);
return res;
}
void preDfs2(int u) {
cntEdge[u] = (u >= numNode);
cntNode[u] = (u < numNode);
for (int it = 0; it < sz(adjp[u]); ++it) {
int v(adjp[u][it].fi), w(adjp[u][it].se);
nodew[u] = w, P2[v][0] = u;
depth2[v] = depth2[u] + 1;
preDfs2(v);
cntNode[u] += cntNode[v];
cntEdge[u] += cntEdge[v];
}
}
void init(int _N, int _M, vector<int> _U, vector<int> _V, vector<int> _W) {
numNode = _N, numEdge = _M;
for (int i = 0; i < numEdge; ++i) {
edge[i] = {_U[i], _V[i], _W[i]};
maxw = max(maxw, edge[i].w);
++deg[edge[i].u], ++deg[edge[i].v];
}
check_sub1 = 1;
for (int i = 0; i < numNode; ++i)
check_sub1 &= (deg[i] <= 2);
sort(edge, edge + numEdge, [](const Edge &a, const Edge &b) {
return (a.w < b.w);
});
dsu = DisjointSet(numNode);
nNode = numNode;
for (int i = 0; i < numNode; ++i)
cntNode[i] = 1;
int cnt(0);
for (int i = 0; i < numEdge; ++i) {
int u(edge[i].u), v(edge[i].v);
adjp[nNode].push_back(ii(dsu.getID(u), i));
if(dsu.find(u) != dsu.find(v)) {
idw.push_back(edge[i].w);
adj[u].push_back(ii(v, cnt));
adj[v].push_back(ii(u, cnt));
adjp[nNode].push_back(ii(dsu.getID(v), i));
dsu.join(u, v);
++cnt;
}
dsu.updateID(u, nNode);
++nNode;
}
P[0][0] = -1, depth[0] = 1;
preDfs(0);
for (int j = 1; (1 << j) <= numNode; ++j) {
for (int i = 0; i < numNode; ++i) {
if(P[i][j - 1] == -1) {
P[i][j] = -1;
} else {
P[i][j] = P[P[i][j - 1]][j - 1];
Pw[i][j] = max(Pw[i][j - 1], Pw[P[i][j - 1]][j - 1]);
}
}
}
P2[nNode - 1][0] = -1, depth2[nNode - 1] = 1;
preDfs2(nNode - 1);
fstOk[nNode - 1] = (cntEdge[nNode - 1] >= cntEdge[nNode - 1]) ? nNode - 1 : -1;
for (int i = nNode - 2; i >= 0; --i)
fstOk[i] = (cntEdge[i] >= cntNode[i]) ? i : fstOk[P2[i][0]];
for (int j = 1; (1 << j) <= nNode; ++j) {
for (int i = 0; i < nNode; ++i) {
if(P2[i][j - 1] != -1) {
P2[i][j] = P2[P2[i][j - 1]][j - 1];
} else {
P2[i][j] = -1;
}
}
}
cnt = 0;
dsu = DisjointSet(numNode);
version[0] = build(1, numNode, tmp);
for (int i = 0; i < numEdge; ++i) {
int u(edge[i].u), v(edge[i].v);
if(dsu.find(u) != dsu.find(v)) {
if(P[u][0] == v)
swap(u, v);
++cnt;
int qr = query(version[cnt - 1], 1, numNode, tIn[v], tOut[v]) - (++cntChild[u] == 2);
version[cnt] = update(version[cnt - 1], 1, numNode, tIn[u], qr);
if(++cntChild[v] == 2) {
version[cnt] = update(version[cnt], 1, numNode, tIn[v], -1);
--qr;
}
int w(u);
for (int i = 31 - __builtin_clz(depth[w]); i >= 0; --i) {
if(P[w][i] != -1 && dsu.find(P[w][i]) == dsu.find(u))
w = P[w][i];
}
w = P[w][0];
if(w != -1)
version[cnt] = update(version[cnt], 1, numNode, tIn[w], -qr);
dsu.join(u, v);
}
}
}
ii dfs(int u) {
dx[u] = 1;
cntLeaf[u] = 0;
ii res = {sz(adj[u]), 1};
for (int it = 0; it < sz(adj[u]); ++it) {
int v(adj[u][it].fi);
if(!dx[v]) {
pa[v] = u;
ii tmp = dfs(v);
res = {res.fi + tmp.fi, res.se + tmp.se};
cntLeaf[u] += cntLeaf[v];
}
}
if(cntLeaf[u] == 0)
cntLeaf[u] = 1;
return res;
}
int brute(int x, int y) {
int l(0), r(numEdge - 1), ans(-1);
while(l <= r) {
int mid = (l + r) >> 1;
for (int i = 0; i < numNode; ++i) {
adj[i].clear();
dx[i] = 0;
}
for (int i = 0; i <= mid; ++i) {
int u(edge[i].u), v(edge[i].v);
adj[u].push_back(ii(v, 0));
adj[v].push_back(ii(u, 0));
}
pa[x] = -1;
ii res = dfs(x);
bool check(0);
if(dx[y]) {
int u(y);
while(pa[u] != x)
u = pa[u];
check = (res.fi / 2 >= res.se || cntLeaf[y] > 1 || cntLeaf[x] - cntLeaf[u] > 1 || cntLeaf[u] - cntLeaf[y] > 0);
}
if(check) {
ans = edge[mid].w;
r = mid - 1;
} else {
l = mid + 1;
}
}
return ans;
}
int sub5(int x, int y) {
int l(0), r(numNode - 1), ans(-1);
int par = lca(x, y);
int tmp(x);
for (int i1 = depth[x] - depth[par]; i1 > 0; i1 ^= i1 & -i1) {
int i = __builtin_ctz(i1);
l = max(l, Pw[tmp][i]);
tmp = P[tmp][i];
}
tmp = y;
for (int i1 = depth[y] - depth[par]; i1 > 0; i1 ^= i1 & -i1) {
int i = __builtin_ctz(i1);
l = max(l, Pw[tmp][i]);
tmp = P[tmp][i];
}
if(par == y)
swap(x, y);
int c(-1);
if(par == x) {
c = y;
for (int i1 = depth[y] - depth[x] - 1; i1 > 0; i1 ^= i1 & -i1) {
int i = __builtin_ctz(i1);
c = P[c][i];
}
}
while(l <= r) {
int mid = (l + r) >> 1;
bool check(0);
if(par == x) {
int w(x);
for (int i = 31 - __builtin_clz(depth[w]); i >= 0; --i) {
if(P[w][i] != -1 && Pw[w][i] <= mid)
w = P[w][i];
}
int cntLeafy = query(version[mid + 1], 1, numNode, tIn[y], tOut[y]);
if(cntLeafy <= 1) {
int cntLeafc = query(version[mid + 1], 1, numNode, tIn[c], tOut[c]);
int cntLeafx = query(version[mid + 1], 1, numNode, tIn[w], tOut[w]) - cntLeafc;
if(cntLeafx <= 1) {
int cntLeafInPath = cntLeafc - cntLeafy;
check = (cntLeafInPath > 0);
} else {
check = 1;
}
} else {
check = 1;
}
} else {
if(par > 0 && Pw[par][0] <= mid) {
check = 1;
} else {
int cntLeafx = query(version[mid + 1], 1, numNode, tIn[x], tOut[x]);
if(cntLeafx <= 1) {
int cntLeafy = query(version[mid + 1], 1, numNode, tIn[y], tOut[y]);
if(cntLeafy <= 1) {
int cntLeafInPath = query(version[mid + 1], 1, numNode, tIn[par], tOut[par]) - cntLeafx - cntLeafy;
check = (cntLeafInPath > 0);
} else {
check = 1;
}
} else {
check = 1;
}
}
}
if(check) {
ans = idw[mid];
r = mid - 1;
} else {
l = mid + 1;
}
}
return ans;
}
int lca2(int u, int v) {
if(depth2[u] <
depth2[v])
swap(u, v);
for (int i1 = depth2[u] - depth2[v]; i1 > 0; i1 ^= i1 & -i1) {
int i = __builtin_ctz(i1);
u = P2[u][i];
}
if(u == v)
return u;
for (int i = 31 - __builtin_clz(depth2[u]); i >= 0; --i) {
if(P2[u][i] != P2[v][i])
u = P2[u][i], v = P2[v][i];
}
return P2[u][0];
}
int magicFunc(int x, int y) {
int ansTree = sub5(x, y);
int p = fstOk[lca2(x, y)];
int ans = (p < 0) ? -1 : edge[nodew[p]].w;
if(ansTree < 0 || ans < 0) {
ans = (ans < 0) ? ansTree : ans;
} else {
ans = min(ans, ansTree);
}
return ans;
}
int getMinimumFuelCapacity(int x, int y) {
/*cout << magicFunc(x, y) << ' ' << brute(x, y) << '\n';
if(magicFunc(x, y) != brute(x, y))
exit(1);*/
if(check_sub1)
return (numNode == numEdge) ? maxw : -1;
if(numEdge == numNode - 1)
return sub5(x, y);
return magicFunc(x, y);
}
#ifdef Nhoksocqt1
int main(void) {
ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
#define TASK "swap"
if(fopen(TASK".inp", "r")) {
freopen(TASK".inp", "r", stdin);
freopen(TASK".out", "w", stdout);
}
vector<int> _U, _V, _W;
int _N, _M, _Q;
cin >> _N >> _M >> _Q;
//_N = Random(5e1, 1e2), _M = Random(_N - 1, 2 * _N), _Q = Random(5e4, 2e5); cout << _N << ' ' << _M << ' ' << _Q << '\n';
_U.resize(_M), _V.resize(_M), _W.resize(_M);
for (int i = 0; i < _M; ++i) {
cin >> _U[i] >> _V[i] >> _W[i];
//if(i < _N - 1) _U[i] = Random(max(0, i - 10), i), _V[i] = i + 1; if(i >= _N - 1) _U[i] = Random(0, _N - 2), _V[i] = Random(_U[i] + 1, _N - 1); _W[i] = Random(1, 1e5); cout << _U[i] << ' ' << _V[i] << ' ' << _W[i] << '\n';
}
init(_N, _M, _U, _V, _W);
for (int t = 0; t < _Q; ++t) {
int _X, _Y;
cin >> _X >> _Y;
//_X = Random(0, _N - 2), _Y = Random(_X + 1, _N - 1);
cout << "MINIMUM FUEL CAPACITY " << _X << " TO " << _Y << ": " << getMinimumFuelCapacity(_X, _Y) << '\n';
if(t % 100 == 0)
cerr << "RUNNING ON QUERY " << t << '\n';
}
return 0;
}
#endif // Nhoksocqt1
Compilation message
swap.cpp: In function 'void init(int, int, std::vector<int>, std::vector<int>, std::vector<int>)':
swap.cpp:241:44: warning: self-comparison always evaluates to true [-Wtautological-compare]
241 | fstOk[nNode - 1] = (cntEdge[nNode - 1] >= cntEdge[nNode - 1]) ? nNode - 1 : -1;
| ~~~~~~~~~~~~~~~~~~ ^~ ~~~~~~~~~~~~~~~~~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
9 ms |
31188 KB |
Output is correct |
2 |
Correct |
5 ms |
31068 KB |
Output is correct |
3 |
Correct |
6 ms |
31220 KB |
Output is correct |
4 |
Correct |
6 ms |
31068 KB |
Output is correct |
5 |
Correct |
7 ms |
31320 KB |
Output is correct |
6 |
Correct |
6 ms |
31324 KB |
Output is correct |
7 |
Correct |
8 ms |
31324 KB |
Output is correct |
8 |
Correct |
6 ms |
31324 KB |
Output is correct |
9 |
Correct |
230 ms |
105556 KB |
Output is correct |
10 |
Correct |
303 ms |
122076 KB |
Output is correct |
11 |
Correct |
250 ms |
121188 KB |
Output is correct |
12 |
Correct |
307 ms |
126792 KB |
Output is correct |
13 |
Correct |
185 ms |
107284 KB |
Output is correct |
14 |
Correct |
212 ms |
105140 KB |
Output is correct |
15 |
Correct |
312 ms |
125720 KB |
Output is correct |
16 |
Correct |
328 ms |
122012 KB |
Output is correct |
17 |
Correct |
333 ms |
131980 KB |
Output is correct |
18 |
Correct |
255 ms |
118492 KB |
Output is correct |
19 |
Correct |
62 ms |
49384 KB |
Output is correct |
20 |
Correct |
314 ms |
126124 KB |
Output is correct |
21 |
Correct |
279 ms |
123444 KB |
Output is correct |
22 |
Correct |
350 ms |
131428 KB |
Output is correct |
23 |
Correct |
229 ms |
121584 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
9 ms |
31188 KB |
Output is correct |
2 |
Correct |
5 ms |
31068 KB |
Output is correct |
3 |
Correct |
833 ms |
99088 KB |
Output is correct |
4 |
Correct |
743 ms |
104116 KB |
Output is correct |
5 |
Correct |
790 ms |
101720 KB |
Output is correct |
6 |
Correct |
824 ms |
103984 KB |
Output is correct |
7 |
Correct |
836 ms |
101896 KB |
Output is correct |
8 |
Correct |
812 ms |
98996 KB |
Output is correct |
9 |
Correct |
844 ms |
101688 KB |
Output is correct |
10 |
Correct |
805 ms |
98880 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
9 ms |
31188 KB |
Output is correct |
2 |
Correct |
5 ms |
31068 KB |
Output is correct |
3 |
Correct |
6 ms |
31220 KB |
Output is correct |
4 |
Correct |
6 ms |
31068 KB |
Output is correct |
5 |
Correct |
7 ms |
31320 KB |
Output is correct |
6 |
Correct |
6 ms |
31324 KB |
Output is correct |
7 |
Correct |
8 ms |
31324 KB |
Output is correct |
8 |
Correct |
6 ms |
31324 KB |
Output is correct |
9 |
Correct |
5 ms |
31064 KB |
Output is correct |
10 |
Correct |
6 ms |
31324 KB |
Output is correct |
11 |
Correct |
7 ms |
31204 KB |
Output is correct |
12 |
Correct |
6 ms |
31324 KB |
Output is correct |
13 |
Correct |
6 ms |
31324 KB |
Output is correct |
14 |
Correct |
6 ms |
31320 KB |
Output is correct |
15 |
Correct |
6 ms |
31160 KB |
Output is correct |
16 |
Correct |
6 ms |
31320 KB |
Output is correct |
17 |
Correct |
6 ms |
31324 KB |
Output is correct |
18 |
Correct |
7 ms |
31372 KB |
Output is correct |
19 |
Correct |
6 ms |
31324 KB |
Output is correct |
20 |
Correct |
6 ms |
31320 KB |
Output is correct |
21 |
Correct |
6 ms |
31324 KB |
Output is correct |
22 |
Correct |
6 ms |
31324 KB |
Output is correct |
23 |
Correct |
6 ms |
31324 KB |
Output is correct |
24 |
Correct |
6 ms |
31324 KB |
Output is correct |
25 |
Correct |
6 ms |
31324 KB |
Output is correct |
26 |
Correct |
7 ms |
31496 KB |
Output is correct |
27 |
Correct |
6 ms |
31320 KB |
Output is correct |
28 |
Correct |
6 ms |
31324 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
31064 KB |
Output is correct |
2 |
Correct |
9 ms |
31188 KB |
Output is correct |
3 |
Correct |
5 ms |
31068 KB |
Output is correct |
4 |
Correct |
6 ms |
31220 KB |
Output is correct |
5 |
Correct |
6 ms |
31068 KB |
Output is correct |
6 |
Correct |
7 ms |
31320 KB |
Output is correct |
7 |
Correct |
6 ms |
31324 KB |
Output is correct |
8 |
Correct |
8 ms |
31324 KB |
Output is correct |
9 |
Correct |
6 ms |
31324 KB |
Output is correct |
10 |
Correct |
230 ms |
105556 KB |
Output is correct |
11 |
Correct |
303 ms |
122076 KB |
Output is correct |
12 |
Correct |
250 ms |
121188 KB |
Output is correct |
13 |
Correct |
307 ms |
126792 KB |
Output is correct |
14 |
Correct |
185 ms |
107284 KB |
Output is correct |
15 |
Correct |
6 ms |
31324 KB |
Output is correct |
16 |
Correct |
7 ms |
31204 KB |
Output is correct |
17 |
Correct |
6 ms |
31324 KB |
Output is correct |
18 |
Correct |
6 ms |
31324 KB |
Output is correct |
19 |
Correct |
6 ms |
31320 KB |
Output is correct |
20 |
Correct |
6 ms |
31160 KB |
Output is correct |
21 |
Correct |
6 ms |
31320 KB |
Output is correct |
22 |
Correct |
6 ms |
31324 KB |
Output is correct |
23 |
Correct |
7 ms |
31372 KB |
Output is correct |
24 |
Correct |
6 ms |
31324 KB |
Output is correct |
25 |
Correct |
6 ms |
31320 KB |
Output is correct |
26 |
Correct |
6 ms |
31324 KB |
Output is correct |
27 |
Correct |
6 ms |
31324 KB |
Output is correct |
28 |
Correct |
6 ms |
31324 KB |
Output is correct |
29 |
Correct |
6 ms |
31324 KB |
Output is correct |
30 |
Correct |
6 ms |
31324 KB |
Output is correct |
31 |
Correct |
7 ms |
31496 KB |
Output is correct |
32 |
Correct |
6 ms |
31320 KB |
Output is correct |
33 |
Correct |
6 ms |
31324 KB |
Output is correct |
34 |
Correct |
30 ms |
41212 KB |
Output is correct |
35 |
Correct |
294 ms |
125820 KB |
Output is correct |
36 |
Correct |
307 ms |
123784 KB |
Output is correct |
37 |
Correct |
265 ms |
122260 KB |
Output is correct |
38 |
Correct |
286 ms |
119536 KB |
Output is correct |
39 |
Correct |
259 ms |
117068 KB |
Output is correct |
40 |
Correct |
228 ms |
110220 KB |
Output is correct |
41 |
Correct |
312 ms |
124860 KB |
Output is correct |
42 |
Correct |
300 ms |
125220 KB |
Output is correct |
43 |
Correct |
197 ms |
118200 KB |
Output is correct |
44 |
Correct |
240 ms |
118200 KB |
Output is correct |
45 |
Correct |
246 ms |
114132 KB |
Output is correct |
46 |
Correct |
318 ms |
122944 KB |
Output is correct |
47 |
Correct |
278 ms |
121652 KB |
Output is correct |
48 |
Correct |
252 ms |
117628 KB |
Output is correct |
49 |
Correct |
87 ms |
68476 KB |
Output is correct |
50 |
Correct |
69 ms |
62848 KB |
Output is correct |
51 |
Correct |
158 ms |
98908 KB |
Output is correct |
52 |
Correct |
345 ms |
135864 KB |
Output is correct |
53 |
Correct |
339 ms |
131572 KB |
Output is correct |
54 |
Correct |
349 ms |
142088 KB |
Output is correct |
55 |
Correct |
197 ms |
114876 KB |
Output is correct |
56 |
Correct |
287 ms |
128492 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
9 ms |
31188 KB |
Output is correct |
2 |
Correct |
5 ms |
31068 KB |
Output is correct |
3 |
Correct |
6 ms |
31220 KB |
Output is correct |
4 |
Correct |
6 ms |
31068 KB |
Output is correct |
5 |
Correct |
7 ms |
31320 KB |
Output is correct |
6 |
Correct |
6 ms |
31324 KB |
Output is correct |
7 |
Correct |
8 ms |
31324 KB |
Output is correct |
8 |
Correct |
6 ms |
31324 KB |
Output is correct |
9 |
Correct |
230 ms |
105556 KB |
Output is correct |
10 |
Correct |
303 ms |
122076 KB |
Output is correct |
11 |
Correct |
250 ms |
121188 KB |
Output is correct |
12 |
Correct |
307 ms |
126792 KB |
Output is correct |
13 |
Correct |
185 ms |
107284 KB |
Output is correct |
14 |
Correct |
212 ms |
105140 KB |
Output is correct |
15 |
Correct |
312 ms |
125720 KB |
Output is correct |
16 |
Correct |
328 ms |
122012 KB |
Output is correct |
17 |
Correct |
333 ms |
131980 KB |
Output is correct |
18 |
Correct |
255 ms |
118492 KB |
Output is correct |
19 |
Correct |
833 ms |
99088 KB |
Output is correct |
20 |
Correct |
743 ms |
104116 KB |
Output is correct |
21 |
Correct |
790 ms |
101720 KB |
Output is correct |
22 |
Correct |
824 ms |
103984 KB |
Output is correct |
23 |
Correct |
836 ms |
101896 KB |
Output is correct |
24 |
Correct |
812 ms |
98996 KB |
Output is correct |
25 |
Correct |
844 ms |
101688 KB |
Output is correct |
26 |
Correct |
805 ms |
98880 KB |
Output is correct |
27 |
Correct |
6 ms |
31324 KB |
Output is correct |
28 |
Correct |
7 ms |
31204 KB |
Output is correct |
29 |
Correct |
6 ms |
31324 KB |
Output is correct |
30 |
Correct |
6 ms |
31324 KB |
Output is correct |
31 |
Correct |
6 ms |
31320 KB |
Output is correct |
32 |
Correct |
6 ms |
31160 KB |
Output is correct |
33 |
Correct |
6 ms |
31320 KB |
Output is correct |
34 |
Correct |
6 ms |
31324 KB |
Output is correct |
35 |
Correct |
7 ms |
31372 KB |
Output is correct |
36 |
Correct |
30 ms |
41212 KB |
Output is correct |
37 |
Correct |
294 ms |
125820 KB |
Output is correct |
38 |
Correct |
307 ms |
123784 KB |
Output is correct |
39 |
Correct |
265 ms |
122260 KB |
Output is correct |
40 |
Correct |
286 ms |
119536 KB |
Output is correct |
41 |
Correct |
259 ms |
117068 KB |
Output is correct |
42 |
Correct |
228 ms |
110220 KB |
Output is correct |
43 |
Correct |
312 ms |
124860 KB |
Output is correct |
44 |
Correct |
300 ms |
125220 KB |
Output is correct |
45 |
Correct |
197 ms |
118200 KB |
Output is correct |
46 |
Correct |
240 ms |
118200 KB |
Output is correct |
47 |
Correct |
32 ms |
41404 KB |
Output is correct |
48 |
Correct |
834 ms |
129124 KB |
Output is correct |
49 |
Correct |
652 ms |
127864 KB |
Output is correct |
50 |
Correct |
715 ms |
127016 KB |
Output is correct |
51 |
Correct |
489 ms |
126560 KB |
Output is correct |
52 |
Correct |
410 ms |
119500 KB |
Output is correct |
53 |
Correct |
294 ms |
94656 KB |
Output is correct |
54 |
Correct |
758 ms |
129312 KB |
Output is correct |
55 |
Correct |
776 ms |
129540 KB |
Output is correct |
56 |
Correct |
1251 ms |
129536 KB |
Output is correct |
57 |
Correct |
388 ms |
123680 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
31064 KB |
Output is correct |
2 |
Correct |
9 ms |
31188 KB |
Output is correct |
3 |
Correct |
5 ms |
31068 KB |
Output is correct |
4 |
Correct |
6 ms |
31220 KB |
Output is correct |
5 |
Correct |
6 ms |
31068 KB |
Output is correct |
6 |
Correct |
7 ms |
31320 KB |
Output is correct |
7 |
Correct |
6 ms |
31324 KB |
Output is correct |
8 |
Correct |
8 ms |
31324 KB |
Output is correct |
9 |
Correct |
6 ms |
31324 KB |
Output is correct |
10 |
Correct |
230 ms |
105556 KB |
Output is correct |
11 |
Correct |
303 ms |
122076 KB |
Output is correct |
12 |
Correct |
250 ms |
121188 KB |
Output is correct |
13 |
Correct |
307 ms |
126792 KB |
Output is correct |
14 |
Correct |
185 ms |
107284 KB |
Output is correct |
15 |
Correct |
212 ms |
105140 KB |
Output is correct |
16 |
Correct |
312 ms |
125720 KB |
Output is correct |
17 |
Correct |
328 ms |
122012 KB |
Output is correct |
18 |
Correct |
333 ms |
131980 KB |
Output is correct |
19 |
Correct |
255 ms |
118492 KB |
Output is correct |
20 |
Correct |
833 ms |
99088 KB |
Output is correct |
21 |
Correct |
743 ms |
104116 KB |
Output is correct |
22 |
Correct |
790 ms |
101720 KB |
Output is correct |
23 |
Correct |
824 ms |
103984 KB |
Output is correct |
24 |
Correct |
836 ms |
101896 KB |
Output is correct |
25 |
Correct |
812 ms |
98996 KB |
Output is correct |
26 |
Correct |
844 ms |
101688 KB |
Output is correct |
27 |
Correct |
805 ms |
98880 KB |
Output is correct |
28 |
Correct |
6 ms |
31324 KB |
Output is correct |
29 |
Correct |
7 ms |
31204 KB |
Output is correct |
30 |
Correct |
6 ms |
31324 KB |
Output is correct |
31 |
Correct |
6 ms |
31324 KB |
Output is correct |
32 |
Correct |
6 ms |
31320 KB |
Output is correct |
33 |
Correct |
6 ms |
31160 KB |
Output is correct |
34 |
Correct |
6 ms |
31320 KB |
Output is correct |
35 |
Correct |
6 ms |
31324 KB |
Output is correct |
36 |
Correct |
7 ms |
31372 KB |
Output is correct |
37 |
Correct |
30 ms |
41212 KB |
Output is correct |
38 |
Correct |
294 ms |
125820 KB |
Output is correct |
39 |
Correct |
307 ms |
123784 KB |
Output is correct |
40 |
Correct |
265 ms |
122260 KB |
Output is correct |
41 |
Correct |
286 ms |
119536 KB |
Output is correct |
42 |
Correct |
259 ms |
117068 KB |
Output is correct |
43 |
Correct |
228 ms |
110220 KB |
Output is correct |
44 |
Correct |
312 ms |
124860 KB |
Output is correct |
45 |
Correct |
300 ms |
125220 KB |
Output is correct |
46 |
Correct |
197 ms |
118200 KB |
Output is correct |
47 |
Correct |
240 ms |
118200 KB |
Output is correct |
48 |
Correct |
32 ms |
41404 KB |
Output is correct |
49 |
Correct |
834 ms |
129124 KB |
Output is correct |
50 |
Correct |
652 ms |
127864 KB |
Output is correct |
51 |
Correct |
715 ms |
127016 KB |
Output is correct |
52 |
Correct |
489 ms |
126560 KB |
Output is correct |
53 |
Correct |
410 ms |
119500 KB |
Output is correct |
54 |
Correct |
294 ms |
94656 KB |
Output is correct |
55 |
Correct |
758 ms |
129312 KB |
Output is correct |
56 |
Correct |
776 ms |
129540 KB |
Output is correct |
57 |
Correct |
1251 ms |
129536 KB |
Output is correct |
58 |
Correct |
388 ms |
123680 KB |
Output is correct |
59 |
Correct |
62 ms |
49384 KB |
Output is correct |
60 |
Correct |
314 ms |
126124 KB |
Output is correct |
61 |
Correct |
279 ms |
123444 KB |
Output is correct |
62 |
Correct |
350 ms |
131428 KB |
Output is correct |
63 |
Correct |
229 ms |
121584 KB |
Output is correct |
64 |
Correct |
6 ms |
31324 KB |
Output is correct |
65 |
Correct |
6 ms |
31320 KB |
Output is correct |
66 |
Correct |
6 ms |
31324 KB |
Output is correct |
67 |
Correct |
6 ms |
31324 KB |
Output is correct |
68 |
Correct |
6 ms |
31324 KB |
Output is correct |
69 |
Correct |
6 ms |
31324 KB |
Output is correct |
70 |
Correct |
6 ms |
31324 KB |
Output is correct |
71 |
Correct |
7 ms |
31496 KB |
Output is correct |
72 |
Correct |
6 ms |
31320 KB |
Output is correct |
73 |
Correct |
6 ms |
31324 KB |
Output is correct |
74 |
Correct |
246 ms |
114132 KB |
Output is correct |
75 |
Correct |
318 ms |
122944 KB |
Output is correct |
76 |
Correct |
278 ms |
121652 KB |
Output is correct |
77 |
Correct |
252 ms |
117628 KB |
Output is correct |
78 |
Correct |
87 ms |
68476 KB |
Output is correct |
79 |
Correct |
69 ms |
62848 KB |
Output is correct |
80 |
Correct |
158 ms |
98908 KB |
Output is correct |
81 |
Correct |
345 ms |
135864 KB |
Output is correct |
82 |
Correct |
339 ms |
131572 KB |
Output is correct |
83 |
Correct |
349 ms |
142088 KB |
Output is correct |
84 |
Correct |
197 ms |
114876 KB |
Output is correct |
85 |
Correct |
287 ms |
128492 KB |
Output is correct |
86 |
Correct |
117 ms |
62584 KB |
Output is correct |
87 |
Correct |
763 ms |
127528 KB |
Output is correct |
88 |
Correct |
729 ms |
127696 KB |
Output is correct |
89 |
Correct |
542 ms |
115316 KB |
Output is correct |
90 |
Correct |
180 ms |
73992 KB |
Output is correct |
91 |
Correct |
233 ms |
77912 KB |
Output is correct |
92 |
Correct |
430 ms |
105016 KB |
Output is correct |
93 |
Correct |
1056 ms |
140408 KB |
Output is correct |
94 |
Correct |
915 ms |
136092 KB |
Output is correct |
95 |
Correct |
980 ms |
145880 KB |
Output is correct |
96 |
Correct |
1700 ms |
132640 KB |
Output is correct |
97 |
Correct |
662 ms |
126900 KB |
Output is correct |