Submission #961872

# Submission time Handle Problem Language Result Execution time Memory
961872 2024-04-12T15:32:05 Z Nhoksocqt1 Swapping Cities (APIO20_swap) C++17
100 / 100
1700 ms 145880 KB
#include<bits/stdc++.h>
using namespace std;

#define inf 0x3f3f3f3f
#define sz(x) int((x).size())
#define fi first
#define se second
typedef long long ll;
typedef pair<int, int> ii;

template<class X, class Y>
	inline bool maximize(X &x, const Y &y) {return (x < y ? x = y, 1 : 0);}
template<class X, class Y>
	inline bool minimize(X &x, const Y &y) {return (x > y ? x = y, 1 : 0);}

mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
int Random(int l, int r) {
    return uniform_int_distribution<int>(l, r)(rng);
}

const int MAXN = 100005;

class DisjointSet {
    private:
        vector<int> lab, id;

    public:
        DisjointSet(int _n = 0) {
            lab.assign(_n + 7, -1);
            id.resize(_n + 7);
            for (int i = 0; i <= _n; ++i)
                id[i] = i;
        }

        int find(int u) {
            return (lab[u] < 0) ? u : (lab[u] = find(lab[u]));
        }

        void updateID(int u, int newID) {
            id[find(u)] = newID;
        }

        bool join(int u, int v) {
            u = find(u), v = find(v);
            if(u == v)
                return (false);

            if(lab[u] > lab[v])
                swap(u, v);

            lab[u] += lab[v];
            lab[v] = u;
            return (true);
        }

        int getSize(int u) {
            return -lab[find(u)];
        }

        int getID(int u) {
            return id[find(u)];
        }

} dsu;

struct Edge {
    int u, v, w;
} edge[2 * MAXN];

struct SegNode {
    int cnt, L, R;
} seg[50 * MAXN];

vector<int> idw;
vector<ii> adj[MAXN], adjp[3 * MAXN];
int depth2[3 * MAXN], nodew[3 * MAXN], fstOk[3 * MAXN], cntNode[3 * MAXN], cntEdge[3 * MAXN], P2[3 * MAXN][19];
int version[MAXN], tIn[MAXN], tOut[MAXN], tour[MAXN], depth[MAXN], P[MAXN][17], Pw[MAXN][17];
int deg[MAXN], pa[MAXN], cntLeaf[MAXN], tmp[MAXN], cntChild[MAXN], maxw, nTree, nNode, numNode, numEdge;
bool dp[1003][1003], dx[MAXN], check_sub1, check_sub2;

int cntTime(0);
void preDfs(int u) {
    tIn[u] = ++cntTime;
    tour[cntTime] = u;

    ++tmp[tIn[u]];
    for (int it = 0; it < sz(adj[u]); ++it) {
        int v(adj[u][it].fi), id(adj[u][it].se);
        if(v != P[u][0]) {
            depth[v] = depth[u] + 1;
            P[v][0] = u;
            Pw[v][0] = id;
            preDfs(v);
            --tmp[tIn[u]];
        }
    }

    tOut[u] = cntTime;
}

int lca(int u, int v) {
    if(depth[u] < depth[v])
        swap(u, v);

    for (int i1 = depth[u] - depth[v]; i1 > 0; i1 ^= i1 & -i1) {
        int i = __builtin_ctz(i1);
        u = P[u][i];
    }

    if(u == v)
        return u;

    for (int i = 31 - __builtin_clz(depth[u]); i >= 0; --i) {
        if(P[u][i] != P[v][i])
            u = P[u][i], v = P[v][i];
    }

    return P[u][0];
}

int build(int l, int r, int tmp[]) {
    if(l == r) {
        seg[++nTree].cnt = tmp[l];
        return nTree;
    }

    int cur(++nTree), mid = (l + r) >> 1;
    seg[cur].L = build(l, mid, tmp);
    seg[cur].R = build(mid + 1, r, tmp);

    seg[cur].cnt = seg[seg[cur].L].cnt + seg[seg[cur].R].cnt;
    return cur;
}

int update(int oldID, int l, int r, int pos, int val) {
    if(l == r) {
        seg[++nTree] = seg[oldID];
        seg[nTree].cnt += val;
        return nTree;
    }

    int cur(++nTree), mid = (l + r) >> 1;
    seg[cur] = seg[oldID];

    if(pos <= mid) {
        seg[cur].L = update(seg[oldID].L, l, mid, pos, val);
    } else {
        seg[cur].R = update(seg[oldID].R, mid + 1, r, pos, val);
    }

    seg[cur].cnt = seg[seg[cur].L].cnt + seg[seg[cur].R].cnt;
    return cur;
}

int query(int id, int l, int r, int u, int v) {
    if(u <= l && r <= v)
        return seg[id].cnt;

    int mid = (l + r) >> 1, res(0);
    if(mid >= u)
        res += query(seg[id].L, l, mid, u, v);

    if(mid + 1 <= v)
        res += query(seg[id].R, mid + 1, r, u, v);

    return res;
}

void preDfs2(int u) {
    cntEdge[u] = (u >= numNode);
    cntNode[u] = (u < numNode);
    for (int it = 0; it < sz(adjp[u]); ++it) {
        int v(adjp[u][it].fi), w(adjp[u][it].se);
        nodew[u] = w, P2[v][0] = u;
        depth2[v] = depth2[u] + 1;

        preDfs2(v);
        cntNode[u] += cntNode[v];
        cntEdge[u] += cntEdge[v];
    }
}

void init(int _N, int _M, vector<int> _U, vector<int> _V, vector<int> _W) {
    numNode = _N, numEdge = _M;

    for (int i = 0; i < numEdge; ++i) {
        edge[i] = {_U[i], _V[i], _W[i]};
        maxw = max(maxw, edge[i].w);
        ++deg[edge[i].u], ++deg[edge[i].v];
    }

    check_sub1 = 1;
    for (int i = 0; i < numNode; ++i)
        check_sub1 &= (deg[i] <= 2);

    sort(edge, edge + numEdge, [](const Edge &a, const Edge &b) {
        return (a.w < b.w);
    });

    dsu = DisjointSet(numNode);

    nNode = numNode;
    for (int i = 0; i < numNode; ++i)
        cntNode[i] = 1;

    int cnt(0);
    for (int i = 0; i < numEdge; ++i) {
        int u(edge[i].u), v(edge[i].v);

        adjp[nNode].push_back(ii(dsu.getID(u), i));
        if(dsu.find(u) != dsu.find(v)) {
            idw.push_back(edge[i].w);
            adj[u].push_back(ii(v, cnt));
            adj[v].push_back(ii(u, cnt));
            adjp[nNode].push_back(ii(dsu.getID(v), i));
            dsu.join(u, v);
            ++cnt;
        }

        dsu.updateID(u, nNode);
        ++nNode;
    }

    P[0][0] = -1, depth[0] = 1;
    preDfs(0);

    for (int j = 1; (1 << j) <= numNode; ++j) {
        for (int i = 0; i < numNode; ++i) {
            if(P[i][j - 1] == -1) {
                P[i][j] = -1;
            } else {
                P[i][j] = P[P[i][j - 1]][j - 1];
                Pw[i][j] = max(Pw[i][j - 1], Pw[P[i][j - 1]][j - 1]);
            }
        }
    }

    P2[nNode - 1][0] = -1, depth2[nNode - 1] = 1;
    preDfs2(nNode - 1);

    fstOk[nNode - 1] = (cntEdge[nNode - 1] >= cntEdge[nNode - 1]) ? nNode - 1 : -1;
    for (int i = nNode - 2; i >= 0; --i)
        fstOk[i] = (cntEdge[i] >= cntNode[i]) ? i : fstOk[P2[i][0]];

    for (int j = 1; (1 << j) <= nNode; ++j) {
        for (int i = 0; i < nNode; ++i) {
            if(P2[i][j - 1] != -1) {
                P2[i][j] = P2[P2[i][j - 1]][j - 1];
            } else {
                P2[i][j] = -1;
            }
        }
    }

    cnt = 0;
    dsu = DisjointSet(numNode);
    version[0] = build(1, numNode, tmp);
    for (int i = 0; i < numEdge; ++i) {
        int u(edge[i].u), v(edge[i].v);
        if(dsu.find(u) != dsu.find(v)) {
            if(P[u][0] == v)
                swap(u, v);

            ++cnt;
            int qr = query(version[cnt - 1], 1, numNode, tIn[v], tOut[v]) - (++cntChild[u] == 2);
            version[cnt] = update(version[cnt - 1], 1, numNode, tIn[u], qr);
            if(++cntChild[v] == 2) {
                version[cnt] = update(version[cnt], 1, numNode, tIn[v], -1);
                --qr;
            }

            int w(u);
            for (int i = 31 - __builtin_clz(depth[w]); i >= 0; --i) {
                if(P[w][i] != -1 && dsu.find(P[w][i]) == dsu.find(u))
                    w = P[w][i];
            }

            w = P[w][0];
            if(w != -1)
                version[cnt] = update(version[cnt], 1, numNode, tIn[w], -qr);

            dsu.join(u, v);
        }
    }

}

ii dfs(int u) {
    dx[u] = 1;
    cntLeaf[u] = 0;
    ii res = {sz(adj[u]), 1};
    for (int it = 0; it < sz(adj[u]); ++it) {
        int v(adj[u][it].fi);
        if(!dx[v]) {
            pa[v] = u;
            ii tmp = dfs(v);
            res = {res.fi + tmp.fi, res.se + tmp.se};
            cntLeaf[u] += cntLeaf[v];
        }
    }

    if(cntLeaf[u] == 0)
        cntLeaf[u] = 1;

    return res;
}

int brute(int x, int y) {
    int l(0), r(numEdge - 1), ans(-1);
    while(l <= r) {
        int mid = (l + r) >> 1;

        for (int i = 0; i < numNode; ++i) {
            adj[i].clear();
            dx[i] = 0;
        }

        for (int i = 0; i <= mid; ++i) {
            int u(edge[i].u), v(edge[i].v);
            adj[u].push_back(ii(v, 0));
            adj[v].push_back(ii(u, 0));
        }

        pa[x] = -1;
        ii res = dfs(x);
        bool check(0);
        if(dx[y]) {
            int u(y);
            while(pa[u] != x)
                u = pa[u];

            check = (res.fi / 2 >= res.se || cntLeaf[y] > 1 || cntLeaf[x] - cntLeaf[u] > 1 || cntLeaf[u] - cntLeaf[y] > 0);
        }

        if(check) {
            ans = edge[mid].w;
            r = mid - 1;
        } else {
            l = mid + 1;
        }
    }

    return ans;
}

int sub5(int x, int y) {
    int l(0), r(numNode - 1), ans(-1);
    int par = lca(x, y);

    int tmp(x);
    for (int i1 = depth[x] - depth[par]; i1 > 0; i1 ^= i1 & -i1) {
        int i = __builtin_ctz(i1);
        l = max(l, Pw[tmp][i]);
        tmp = P[tmp][i];
    }

    tmp = y;
    for (int i1 = depth[y] - depth[par]; i1 > 0; i1 ^= i1 & -i1) {
        int i = __builtin_ctz(i1);
        l = max(l, Pw[tmp][i]);
        tmp = P[tmp][i];
    }

    if(par == y)
        swap(x, y);

    int c(-1);
    if(par == x) {
        c = y;
        for (int i1 = depth[y] - depth[x] - 1; i1 > 0; i1 ^= i1 & -i1) {
            int i = __builtin_ctz(i1);
            c = P[c][i];
        }
    }

    while(l <= r) {
        int mid = (l + r) >> 1;

        bool check(0);
        if(par == x) {
            int w(x);
            for (int i = 31 - __builtin_clz(depth[w]); i >= 0; --i) {
                if(P[w][i] != -1 && Pw[w][i] <= mid)
                    w = P[w][i];
            }

            int cntLeafy = query(version[mid + 1], 1, numNode, tIn[y], tOut[y]);
            if(cntLeafy <= 1) {
                int cntLeafc = query(version[mid + 1], 1, numNode, tIn[c], tOut[c]);
                int cntLeafx = query(version[mid + 1], 1, numNode, tIn[w], tOut[w]) - cntLeafc;
                if(cntLeafx <= 1) {
                    int cntLeafInPath = cntLeafc - cntLeafy;
                    check = (cntLeafInPath > 0);
                } else {
                    check = 1;
                }
            } else {
                check = 1;
            }
        } else {
            if(par > 0 && Pw[par][0] <= mid) {
                check = 1;
            } else {
                int cntLeafx = query(version[mid + 1], 1, numNode, tIn[x], tOut[x]);
                if(cntLeafx <= 1) {
                    int cntLeafy = query(version[mid + 1], 1, numNode, tIn[y], tOut[y]);
                    if(cntLeafy <= 1) {
                        int cntLeafInPath = query(version[mid + 1], 1, numNode, tIn[par], tOut[par]) - cntLeafx - cntLeafy;
                        check = (cntLeafInPath > 0);
                    } else {
                        check = 1;
                    }
                } else {
                    check = 1;
                }
            }
        }

        if(check) {
            ans = idw[mid];
            r = mid - 1;
        } else {
            l = mid + 1;
        }
    }

    return ans;
}

int lca2(int u, int v) {
    if(depth2[u] <
        depth2[v])
        swap(u, v);

    for (int i1 = depth2[u] - depth2[v]; i1 > 0; i1 ^= i1 & -i1) {
        int i = __builtin_ctz(i1);
        u = P2[u][i];
    }

    if(u == v)
        return u;

    for (int i = 31 - __builtin_clz(depth2[u]); i >= 0; --i) {
        if(P2[u][i] != P2[v][i])
            u = P2[u][i], v = P2[v][i];
    }

    return P2[u][0];
}

int magicFunc(int x, int y) {
    int ansTree = sub5(x, y);
    int p = fstOk[lca2(x, y)];
    int ans = (p < 0) ? -1 : edge[nodew[p]].w;

    if(ansTree < 0 || ans < 0) {
        ans = (ans < 0) ? ansTree : ans;
    } else {
        ans = min(ans, ansTree);
    }

    return ans;
}

int getMinimumFuelCapacity(int x, int y) {
    /*cout << magicFunc(x, y) << ' ' << brute(x, y) << '\n';
    if(magicFunc(x, y) != brute(x, y))
        exit(1);*/

    if(check_sub1)
        return (numNode == numEdge) ? maxw : -1;

    if(numEdge == numNode - 1)
        return sub5(x, y);

    return magicFunc(x, y);
}

#ifdef Nhoksocqt1

int main(void) {
    ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);

    #define TASK "swap"
    if(fopen(TASK".inp", "r")) {
        freopen(TASK".inp", "r", stdin);
        freopen(TASK".out", "w", stdout);
    }

    vector<int> _U, _V, _W;
    int _N, _M, _Q;
    cin >> _N >> _M >> _Q;
    //_N = Random(5e1, 1e2), _M = Random(_N - 1, 2 * _N), _Q = Random(5e4, 2e5); cout << _N << ' ' << _M << ' ' << _Q << '\n';

    _U.resize(_M), _V.resize(_M), _W.resize(_M);
    for (int i = 0; i < _M; ++i) {
        cin >> _U[i] >> _V[i] >> _W[i];
        //if(i < _N - 1) _U[i] = Random(max(0, i - 10), i), _V[i] = i + 1; if(i >= _N - 1) _U[i] = Random(0, _N - 2), _V[i] = Random(_U[i] + 1, _N - 1); _W[i] = Random(1, 1e5); cout << _U[i] << ' ' << _V[i] << ' ' << _W[i] << '\n';
    }

    init(_N, _M, _U, _V, _W);
    for (int t = 0; t < _Q; ++t) {
        int _X, _Y;
        cin >> _X >> _Y;
        //_X = Random(0, _N - 2), _Y = Random(_X + 1, _N - 1);
        cout << "MINIMUM FUEL CAPACITY " << _X << " TO " << _Y << ": " << getMinimumFuelCapacity(_X, _Y) << '\n';
        if(t % 100 == 0)
            cerr << "RUNNING ON QUERY " << t << '\n';
    }

    return 0;
}

#endif // Nhoksocqt1

Compilation message

swap.cpp: In function 'void init(int, int, std::vector<int>, std::vector<int>, std::vector<int>)':
swap.cpp:241:44: warning: self-comparison always evaluates to true [-Wtautological-compare]
  241 |     fstOk[nNode - 1] = (cntEdge[nNode - 1] >= cntEdge[nNode - 1]) ? nNode - 1 : -1;
      |                         ~~~~~~~~~~~~~~~~~~ ^~ ~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 9 ms 31188 KB Output is correct
2 Correct 5 ms 31068 KB Output is correct
3 Correct 6 ms 31220 KB Output is correct
4 Correct 6 ms 31068 KB Output is correct
5 Correct 7 ms 31320 KB Output is correct
6 Correct 6 ms 31324 KB Output is correct
7 Correct 8 ms 31324 KB Output is correct
8 Correct 6 ms 31324 KB Output is correct
9 Correct 230 ms 105556 KB Output is correct
10 Correct 303 ms 122076 KB Output is correct
11 Correct 250 ms 121188 KB Output is correct
12 Correct 307 ms 126792 KB Output is correct
13 Correct 185 ms 107284 KB Output is correct
14 Correct 212 ms 105140 KB Output is correct
15 Correct 312 ms 125720 KB Output is correct
16 Correct 328 ms 122012 KB Output is correct
17 Correct 333 ms 131980 KB Output is correct
18 Correct 255 ms 118492 KB Output is correct
19 Correct 62 ms 49384 KB Output is correct
20 Correct 314 ms 126124 KB Output is correct
21 Correct 279 ms 123444 KB Output is correct
22 Correct 350 ms 131428 KB Output is correct
23 Correct 229 ms 121584 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 31188 KB Output is correct
2 Correct 5 ms 31068 KB Output is correct
3 Correct 833 ms 99088 KB Output is correct
4 Correct 743 ms 104116 KB Output is correct
5 Correct 790 ms 101720 KB Output is correct
6 Correct 824 ms 103984 KB Output is correct
7 Correct 836 ms 101896 KB Output is correct
8 Correct 812 ms 98996 KB Output is correct
9 Correct 844 ms 101688 KB Output is correct
10 Correct 805 ms 98880 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 31188 KB Output is correct
2 Correct 5 ms 31068 KB Output is correct
3 Correct 6 ms 31220 KB Output is correct
4 Correct 6 ms 31068 KB Output is correct
5 Correct 7 ms 31320 KB Output is correct
6 Correct 6 ms 31324 KB Output is correct
7 Correct 8 ms 31324 KB Output is correct
8 Correct 6 ms 31324 KB Output is correct
9 Correct 5 ms 31064 KB Output is correct
10 Correct 6 ms 31324 KB Output is correct
11 Correct 7 ms 31204 KB Output is correct
12 Correct 6 ms 31324 KB Output is correct
13 Correct 6 ms 31324 KB Output is correct
14 Correct 6 ms 31320 KB Output is correct
15 Correct 6 ms 31160 KB Output is correct
16 Correct 6 ms 31320 KB Output is correct
17 Correct 6 ms 31324 KB Output is correct
18 Correct 7 ms 31372 KB Output is correct
19 Correct 6 ms 31324 KB Output is correct
20 Correct 6 ms 31320 KB Output is correct
21 Correct 6 ms 31324 KB Output is correct
22 Correct 6 ms 31324 KB Output is correct
23 Correct 6 ms 31324 KB Output is correct
24 Correct 6 ms 31324 KB Output is correct
25 Correct 6 ms 31324 KB Output is correct
26 Correct 7 ms 31496 KB Output is correct
27 Correct 6 ms 31320 KB Output is correct
28 Correct 6 ms 31324 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 31064 KB Output is correct
2 Correct 9 ms 31188 KB Output is correct
3 Correct 5 ms 31068 KB Output is correct
4 Correct 6 ms 31220 KB Output is correct
5 Correct 6 ms 31068 KB Output is correct
6 Correct 7 ms 31320 KB Output is correct
7 Correct 6 ms 31324 KB Output is correct
8 Correct 8 ms 31324 KB Output is correct
9 Correct 6 ms 31324 KB Output is correct
10 Correct 230 ms 105556 KB Output is correct
11 Correct 303 ms 122076 KB Output is correct
12 Correct 250 ms 121188 KB Output is correct
13 Correct 307 ms 126792 KB Output is correct
14 Correct 185 ms 107284 KB Output is correct
15 Correct 6 ms 31324 KB Output is correct
16 Correct 7 ms 31204 KB Output is correct
17 Correct 6 ms 31324 KB Output is correct
18 Correct 6 ms 31324 KB Output is correct
19 Correct 6 ms 31320 KB Output is correct
20 Correct 6 ms 31160 KB Output is correct
21 Correct 6 ms 31320 KB Output is correct
22 Correct 6 ms 31324 KB Output is correct
23 Correct 7 ms 31372 KB Output is correct
24 Correct 6 ms 31324 KB Output is correct
25 Correct 6 ms 31320 KB Output is correct
26 Correct 6 ms 31324 KB Output is correct
27 Correct 6 ms 31324 KB Output is correct
28 Correct 6 ms 31324 KB Output is correct
29 Correct 6 ms 31324 KB Output is correct
30 Correct 6 ms 31324 KB Output is correct
31 Correct 7 ms 31496 KB Output is correct
32 Correct 6 ms 31320 KB Output is correct
33 Correct 6 ms 31324 KB Output is correct
34 Correct 30 ms 41212 KB Output is correct
35 Correct 294 ms 125820 KB Output is correct
36 Correct 307 ms 123784 KB Output is correct
37 Correct 265 ms 122260 KB Output is correct
38 Correct 286 ms 119536 KB Output is correct
39 Correct 259 ms 117068 KB Output is correct
40 Correct 228 ms 110220 KB Output is correct
41 Correct 312 ms 124860 KB Output is correct
42 Correct 300 ms 125220 KB Output is correct
43 Correct 197 ms 118200 KB Output is correct
44 Correct 240 ms 118200 KB Output is correct
45 Correct 246 ms 114132 KB Output is correct
46 Correct 318 ms 122944 KB Output is correct
47 Correct 278 ms 121652 KB Output is correct
48 Correct 252 ms 117628 KB Output is correct
49 Correct 87 ms 68476 KB Output is correct
50 Correct 69 ms 62848 KB Output is correct
51 Correct 158 ms 98908 KB Output is correct
52 Correct 345 ms 135864 KB Output is correct
53 Correct 339 ms 131572 KB Output is correct
54 Correct 349 ms 142088 KB Output is correct
55 Correct 197 ms 114876 KB Output is correct
56 Correct 287 ms 128492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 31188 KB Output is correct
2 Correct 5 ms 31068 KB Output is correct
3 Correct 6 ms 31220 KB Output is correct
4 Correct 6 ms 31068 KB Output is correct
5 Correct 7 ms 31320 KB Output is correct
6 Correct 6 ms 31324 KB Output is correct
7 Correct 8 ms 31324 KB Output is correct
8 Correct 6 ms 31324 KB Output is correct
9 Correct 230 ms 105556 KB Output is correct
10 Correct 303 ms 122076 KB Output is correct
11 Correct 250 ms 121188 KB Output is correct
12 Correct 307 ms 126792 KB Output is correct
13 Correct 185 ms 107284 KB Output is correct
14 Correct 212 ms 105140 KB Output is correct
15 Correct 312 ms 125720 KB Output is correct
16 Correct 328 ms 122012 KB Output is correct
17 Correct 333 ms 131980 KB Output is correct
18 Correct 255 ms 118492 KB Output is correct
19 Correct 833 ms 99088 KB Output is correct
20 Correct 743 ms 104116 KB Output is correct
21 Correct 790 ms 101720 KB Output is correct
22 Correct 824 ms 103984 KB Output is correct
23 Correct 836 ms 101896 KB Output is correct
24 Correct 812 ms 98996 KB Output is correct
25 Correct 844 ms 101688 KB Output is correct
26 Correct 805 ms 98880 KB Output is correct
27 Correct 6 ms 31324 KB Output is correct
28 Correct 7 ms 31204 KB Output is correct
29 Correct 6 ms 31324 KB Output is correct
30 Correct 6 ms 31324 KB Output is correct
31 Correct 6 ms 31320 KB Output is correct
32 Correct 6 ms 31160 KB Output is correct
33 Correct 6 ms 31320 KB Output is correct
34 Correct 6 ms 31324 KB Output is correct
35 Correct 7 ms 31372 KB Output is correct
36 Correct 30 ms 41212 KB Output is correct
37 Correct 294 ms 125820 KB Output is correct
38 Correct 307 ms 123784 KB Output is correct
39 Correct 265 ms 122260 KB Output is correct
40 Correct 286 ms 119536 KB Output is correct
41 Correct 259 ms 117068 KB Output is correct
42 Correct 228 ms 110220 KB Output is correct
43 Correct 312 ms 124860 KB Output is correct
44 Correct 300 ms 125220 KB Output is correct
45 Correct 197 ms 118200 KB Output is correct
46 Correct 240 ms 118200 KB Output is correct
47 Correct 32 ms 41404 KB Output is correct
48 Correct 834 ms 129124 KB Output is correct
49 Correct 652 ms 127864 KB Output is correct
50 Correct 715 ms 127016 KB Output is correct
51 Correct 489 ms 126560 KB Output is correct
52 Correct 410 ms 119500 KB Output is correct
53 Correct 294 ms 94656 KB Output is correct
54 Correct 758 ms 129312 KB Output is correct
55 Correct 776 ms 129540 KB Output is correct
56 Correct 1251 ms 129536 KB Output is correct
57 Correct 388 ms 123680 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 31064 KB Output is correct
2 Correct 9 ms 31188 KB Output is correct
3 Correct 5 ms 31068 KB Output is correct
4 Correct 6 ms 31220 KB Output is correct
5 Correct 6 ms 31068 KB Output is correct
6 Correct 7 ms 31320 KB Output is correct
7 Correct 6 ms 31324 KB Output is correct
8 Correct 8 ms 31324 KB Output is correct
9 Correct 6 ms 31324 KB Output is correct
10 Correct 230 ms 105556 KB Output is correct
11 Correct 303 ms 122076 KB Output is correct
12 Correct 250 ms 121188 KB Output is correct
13 Correct 307 ms 126792 KB Output is correct
14 Correct 185 ms 107284 KB Output is correct
15 Correct 212 ms 105140 KB Output is correct
16 Correct 312 ms 125720 KB Output is correct
17 Correct 328 ms 122012 KB Output is correct
18 Correct 333 ms 131980 KB Output is correct
19 Correct 255 ms 118492 KB Output is correct
20 Correct 833 ms 99088 KB Output is correct
21 Correct 743 ms 104116 KB Output is correct
22 Correct 790 ms 101720 KB Output is correct
23 Correct 824 ms 103984 KB Output is correct
24 Correct 836 ms 101896 KB Output is correct
25 Correct 812 ms 98996 KB Output is correct
26 Correct 844 ms 101688 KB Output is correct
27 Correct 805 ms 98880 KB Output is correct
28 Correct 6 ms 31324 KB Output is correct
29 Correct 7 ms 31204 KB Output is correct
30 Correct 6 ms 31324 KB Output is correct
31 Correct 6 ms 31324 KB Output is correct
32 Correct 6 ms 31320 KB Output is correct
33 Correct 6 ms 31160 KB Output is correct
34 Correct 6 ms 31320 KB Output is correct
35 Correct 6 ms 31324 KB Output is correct
36 Correct 7 ms 31372 KB Output is correct
37 Correct 30 ms 41212 KB Output is correct
38 Correct 294 ms 125820 KB Output is correct
39 Correct 307 ms 123784 KB Output is correct
40 Correct 265 ms 122260 KB Output is correct
41 Correct 286 ms 119536 KB Output is correct
42 Correct 259 ms 117068 KB Output is correct
43 Correct 228 ms 110220 KB Output is correct
44 Correct 312 ms 124860 KB Output is correct
45 Correct 300 ms 125220 KB Output is correct
46 Correct 197 ms 118200 KB Output is correct
47 Correct 240 ms 118200 KB Output is correct
48 Correct 32 ms 41404 KB Output is correct
49 Correct 834 ms 129124 KB Output is correct
50 Correct 652 ms 127864 KB Output is correct
51 Correct 715 ms 127016 KB Output is correct
52 Correct 489 ms 126560 KB Output is correct
53 Correct 410 ms 119500 KB Output is correct
54 Correct 294 ms 94656 KB Output is correct
55 Correct 758 ms 129312 KB Output is correct
56 Correct 776 ms 129540 KB Output is correct
57 Correct 1251 ms 129536 KB Output is correct
58 Correct 388 ms 123680 KB Output is correct
59 Correct 62 ms 49384 KB Output is correct
60 Correct 314 ms 126124 KB Output is correct
61 Correct 279 ms 123444 KB Output is correct
62 Correct 350 ms 131428 KB Output is correct
63 Correct 229 ms 121584 KB Output is correct
64 Correct 6 ms 31324 KB Output is correct
65 Correct 6 ms 31320 KB Output is correct
66 Correct 6 ms 31324 KB Output is correct
67 Correct 6 ms 31324 KB Output is correct
68 Correct 6 ms 31324 KB Output is correct
69 Correct 6 ms 31324 KB Output is correct
70 Correct 6 ms 31324 KB Output is correct
71 Correct 7 ms 31496 KB Output is correct
72 Correct 6 ms 31320 KB Output is correct
73 Correct 6 ms 31324 KB Output is correct
74 Correct 246 ms 114132 KB Output is correct
75 Correct 318 ms 122944 KB Output is correct
76 Correct 278 ms 121652 KB Output is correct
77 Correct 252 ms 117628 KB Output is correct
78 Correct 87 ms 68476 KB Output is correct
79 Correct 69 ms 62848 KB Output is correct
80 Correct 158 ms 98908 KB Output is correct
81 Correct 345 ms 135864 KB Output is correct
82 Correct 339 ms 131572 KB Output is correct
83 Correct 349 ms 142088 KB Output is correct
84 Correct 197 ms 114876 KB Output is correct
85 Correct 287 ms 128492 KB Output is correct
86 Correct 117 ms 62584 KB Output is correct
87 Correct 763 ms 127528 KB Output is correct
88 Correct 729 ms 127696 KB Output is correct
89 Correct 542 ms 115316 KB Output is correct
90 Correct 180 ms 73992 KB Output is correct
91 Correct 233 ms 77912 KB Output is correct
92 Correct 430 ms 105016 KB Output is correct
93 Correct 1056 ms 140408 KB Output is correct
94 Correct 915 ms 136092 KB Output is correct
95 Correct 980 ms 145880 KB Output is correct
96 Correct 1700 ms 132640 KB Output is correct
97 Correct 662 ms 126900 KB Output is correct