Submission #961643

# Submission time Handle Problem Language Result Execution time Memory
961643 2024-04-12T09:29:46 Z Nhoksocqt1 Swapping Cities (APIO20_swap) C++17
73 / 100
2000 ms 145896 KB
#include<bits/stdc++.h>
using namespace std;

#define inf 0x3f3f3f3f
#define sz(x) int((x).size())
#define fi first
#define se second
typedef long long ll;
typedef pair<int, int> ii;

template<class X, class Y>
	inline bool maximize(X &x, const Y &y) {return (x < y ? x = y, 1 : 0);}
template<class X, class Y>
	inline bool minimize(X &x, const Y &y) {return (x > y ? x = y, 1 : 0);}

mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
int Random(int l, int r) {
    return uniform_int_distribution<int>(l, r)(rng);
}

const int MAXN = 100005;

class DisjointSet {
    private:
        vector<int> lab, id;

    public:
        DisjointSet(int _n = 0) {
            lab.assign(_n + 7, -1);
            id.resize(_n + 7);
            for (int i = 0; i <= _n; ++i)
                id[i] = i;
        }

        int find(int u) {
            return (lab[u] < 0) ? u : (lab[u] = find(lab[u]));
        }

        void updateID(int u, int newID) {
            id[find(u)] = newID;
        }

        bool join(int u, int v) {
            u = find(u), v = find(v);
            if(u == v)
                return (false);

            if(lab[u] > lab[v])
                swap(u, v);

            lab[u] += lab[v];
            lab[v] = u;
            return (true);
        }

        int getSize(int u) {
            return -lab[find(u)];
        }

        int getID(int u) {
            return id[find(u)];
        }

} dsu;

struct Edge {
    int u, v, w;
} edge[2 * MAXN];

struct SegNode {
    int cnt, L, R;
} seg[50 * MAXN];

vector<int> idw;
vector<ii> adj[MAXN];
int cntNode[3 * MAXN], cntEdge[3 * MAXN], P2[3 * MAXN][19], Pw2[3 * MAXN][19];
int version[MAXN], tIn[MAXN], tOut[MAXN], tour[MAXN], depth[MAXN], P[MAXN][17], Pw[MAXN][17];
int deg[MAXN], pa[MAXN], cntLeaf[MAXN], tmp[MAXN], cntChild[MAXN], maxw, nTree, nNode, numNode, numEdge;
bool dp[1003][1003], dx[MAXN], check_sub1, check_sub2;

int cntTime(0);
void preDfs(int u) {
    tIn[u] = ++cntTime;
    tour[cntTime] = u;

    ++tmp[tIn[u]];
    for (int it = 0; it < sz(adj[u]); ++it) {
        int v(adj[u][it].fi), id(adj[u][it].se);
        if(v != P[u][0]) {
            depth[v] = depth[u] + 1;
            P[v][0] = u;
            Pw[v][0] = id;
            preDfs(v);
            --tmp[tIn[u]];
        }
    }

    tOut[u] = cntTime;
}

int lca(int u, int v) {
    if(depth[u] < depth[v])
        swap(u, v);

    for (int i1 = depth[u] - depth[v]; i1 > 0; i1 ^= i1 & -i1) {
        int i = __builtin_ctz(i1);
        u = P[u][i];
    }

    if(u == v)
        return u;

    for (int i = 31 - __builtin_clz(depth[u]); i >= 0; --i) {
        if(P[u][i] != P[v][i])
            u = P[u][i], v = P[v][i];
    }

    return P[u][0];
}

int build(int l, int r, int tmp[]) {
    if(l == r) {
        seg[++nTree].cnt = tmp[l];
        return nTree;
    }

    int cur(++nTree), mid = (l + r) >> 1;
    seg[cur].L = build(l, mid, tmp);
    seg[cur].R = build(mid + 1, r, tmp);

    seg[cur].cnt = seg[seg[cur].L].cnt + seg[seg[cur].R].cnt;
    return cur;
}

int update(int oldID, int l, int r, int pos, int val) {
    if(l == r) {
        seg[++nTree] = seg[oldID];
        seg[nTree].cnt += val;
        return nTree;
    }

    int cur(++nTree), mid = (l + r) >> 1;
    seg[cur] = seg[oldID];

    if(pos <= mid) {
        seg[cur].L = update(seg[oldID].L, l, mid, pos, val);
    } else {
        seg[cur].R = update(seg[oldID].R, mid + 1, r, pos, val);
    }

    seg[cur].cnt = seg[seg[cur].L].cnt + seg[seg[cur].R].cnt;
    return cur;
}

int query(int id, int l, int r, int u, int v) {
    if(u <= l && r <= v)
        return seg[id].cnt;

    int mid = (l + r) >> 1, res(0);
    if(mid >= u)
        res += query(seg[id].L, l, mid, u, v);

    if(mid + 1 <= v)
        res += query(seg[id].R, mid + 1, r, u, v);

    return res;
}

void init(int _N, int _M, vector<int> _U, vector<int> _V, vector<int> _W) {
    numNode = _N, numEdge = _M;

    for (int i = 0; i < numEdge; ++i) {
        edge[i] = {_U[i], _V[i], _W[i]};
        maxw = max(maxw, edge[i].w);
        ++deg[edge[i].u], ++deg[edge[i].v];
    }

    check_sub1 = 1;
    for (int i = 0; i < numNode; ++i)
        check_sub1 &= (deg[i] <= 2);

    sort(edge, edge + numEdge, [](const Edge &a, const Edge &b) {
        return (a.w < b.w);
    });

    dsu = DisjointSet(numNode);

    nNode = numNode;
    for (int i = 0; i < numNode; ++i)
        cntNode[i] = 1;

    int cnt(0);
    for (int i = 0; i < numEdge; ++i) {
        int u(edge[i].u), v(edge[i].v);
        if(dsu.find(u) != dsu.find(v)) {
            idw.push_back(edge[i].w);
            adj[u].push_back(ii(v, cnt));
            adj[v].push_back(ii(u, cnt));
            cntNode[nNode] = cntNode[dsu.getID(u)] + cntNode[dsu.getID(v)];
            cntEdge[nNode] = 1 + cntEdge[dsu.getID(u)] + cntEdge[dsu.getID(v)];
            P2[dsu.getID(u)][0] = P2[dsu.getID(v)][0] = nNode;
            Pw2[dsu.getID(u)][0] = Pw2[dsu.getID(v)][0] = i;
            //cout << nNode << ' ' << dsu.getID(u) << ' ' << i << '\n' << nNode << ' ' << dsu.getID(v) << ' ' << i << '\n';
            dsu.join(u, v);
            ++cnt;
        } else {
            //cout << nNode << ' ' << dsu.getID(u) << ' ' << i << '\n';
            cntNode[nNode] = cntNode[dsu.getID(u)];
            cntEdge[nNode] = 1 + cntEdge[dsu.getID(u)];
            P2[dsu.getID(u)][0] = nNode;
            Pw2[dsu.getID(u)][0] = i;
        }

        dsu.updateID(u, nNode);
        ++nNode;
    }

    P[0][0] = -1, depth[0] = 1;
    preDfs(0);

    for (int j = 1; (1 << j) <= numNode; ++j) {
        for (int i = 0; i < numNode; ++i) {
            if(P[i][j - 1] == -1) {
                P[i][j] = -1;
            } else {
                P[i][j] = P[P[i][j - 1]][j - 1];
                Pw[i][j] = max(Pw[i][j - 1], Pw[P[i][j - 1]][j - 1]);
            }
        }
    }

    P2[nNode - 1][0] = -1;
    for (int j = 1; (1 << j) <= nNode; ++j) {
        for (int i = 0; i < nNode; ++i) {
            if(P2[i][j - 1] != -1) {
                P2[i][j] = P2[P2[i][j - 1]][j - 1];
                Pw2[i][j] = max(Pw2[i][j - 1], Pw2[P2[i][j - 1]][j - 1]);
            } else {
                P2[i][j] = -1;
            }
        }
    }

    cnt = 0;
    dsu = DisjointSet(numNode);
    version[0] = build(1, numNode, tmp);
    for (int i = 0; i < numEdge; ++i) {
        int u(edge[i].u), v(edge[i].v);
        if(dsu.find(u) != dsu.find(v)) {
            if(P[u][0] == v)
                swap(u, v);

            ++cnt;
            int qr = query(version[cnt - 1], 1, numNode, tIn[v], tOut[v]) - (++cntChild[u] == 2);
            version[cnt] = update(version[cnt - 1], 1, numNode, tIn[u], qr);
            if(++cntChild[v] == 2) {
                version[cnt] = update(version[cnt], 1, numNode, tIn[v], -1);
                --qr;
            }

            int w(u);
            for (int i = 31 - __builtin_clz(depth[w]); i >= 0; --i) {
                if(P[w][i] != -1 && dsu.find(P[w][i]) == dsu.find(u))
                    w = P[w][i];
            }

            w = P[w][0];
            if(w != -1)
                version[cnt] = update(version[cnt], 1, numNode, tIn[w], -qr);

            dsu.join(u, v);
        }
    }

}

ii dfs(int u) {
    dx[u] = 1;
    cntLeaf[u] = 0;
    ii res = {sz(adj[u]), 1};
    for (int it = 0; it < sz(adj[u]); ++it) {
        int v(adj[u][it].fi);
        if(!dx[v]) {
            pa[v] = u;
            ii tmp = dfs(v);
            res = {res.fi + tmp.fi, res.se + tmp.se};
            cntLeaf[u] += cntLeaf[v];
        }
    }

    if(cntLeaf[u] == 0)
        cntLeaf[u] = 1;

    return res;
}

int brute(int x, int y) {
    int l(0), r(numEdge - 1), ans(-1);
    while(l <= r) {
        int mid = (l + r) >> 1;

        for (int i = 0; i < numNode; ++i) {
            adj[i].clear();
            dx[i] = 0;
        }

        for (int i = 0; i <= mid; ++i) {
            int u(edge[i].u), v(edge[i].v);
            adj[u].push_back(ii(v, 0));
            adj[v].push_back(ii(u, 0));
        }

        pa[x] = -1;
        ii res = dfs(x);
        bool check(0);
        if(dx[y]) {
            int u(y);
            while(pa[u] != x)
                u = pa[u];

            check = (res.fi / 2 >= res.se || cntLeaf[y] > 1 || cntLeaf[x] - cntLeaf[u] > 1 || cntLeaf[u] - cntLeaf[y] > 0);
        }

        if(check) {
            ans = edge[mid].w;
            r = mid - 1;
        } else {
            l = mid + 1;
        }
    }

    return ans;
}

int sub5(int x, int y) {
    int l(0), r(numNode - 1), ans(-1);
    int par = lca(x, y);

    int tmp(x);
    for (int i1 = depth[x] - depth[par]; i1 > 0; i1 ^= i1 & -i1) {
        int i = __builtin_ctz(i1);
        l = max(l, Pw[tmp][i]);
        tmp = P[tmp][i];
    }

    tmp = y;
    for (int i1 = depth[y] - depth[par]; i1 > 0; i1 ^= i1 & -i1) {
        int i = __builtin_ctz(i1);
        l = max(l, Pw[tmp][i]);
        tmp = P[tmp][i];
    }

    if(par == y)
        swap(x, y);

    int c(-1);
    if(par == x) {
        c = y;
        for (int i1 = depth[y] - depth[x] - 1; i1 > 0; i1 ^= i1 & -i1) {
            int i = __builtin_ctz(i1);
            c = P[c][i];
        }
    }

    while(l <= r) {
        int mid = (l + r) >> 1;

        bool check(0);
        if(par == x) {
            int w(x);
            for (int i = 31 - __builtin_clz(depth[w]); i >= 0; --i) {
                if(P[w][i] != -1 && Pw[w][i] <= mid)
                    w = P[w][i];
            }

            int cntLeafy = query(version[mid + 1], 1, numNode, tIn[y], tOut[y]);
            if(cntLeafy <= 1) {
                int cntLeafc = query(version[mid + 1], 1, numNode, tIn[c], tOut[c]);
                int cntLeafx = query(version[mid + 1], 1, numNode, tIn[w], tOut[w]) - cntLeafc;
                if(cntLeafx <= 1) {
                    int cntLeafInPath = cntLeafc - cntLeafy;
                    check = (cntLeafInPath > 0);
                } else {
                    check = 1;
                }
            } else {
                check = 1;
            }
        } else {
            if(par > 0 && Pw[par][0] <= mid) {
                check = 1;
            } else {
                int cntLeafx = query(version[mid + 1], 1, numNode, tIn[x], tOut[x]);
                if(cntLeafx <= 1) {
                    int cntLeafy = query(version[mid + 1], 1, numNode, tIn[y], tOut[y]);
                    if(cntLeafy <= 1) {
                        int cntLeafInPath = query(version[mid + 1], 1, numNode, tIn[par], tOut[par]) - cntLeafx - cntLeafy;
                        check = (cntLeafInPath > 0);
                    } else {
                        check = 1;
                    }
                } else {
                    check = 1;
                }
            }
        }

        if(check) {
            ans = idw[mid];
            r = mid - 1;
        } else {
            l = mid + 1;
        }
    }

    return ans;
}

int magicFunc(int x, int y) {
    int ansTree = sub5(x, y);
    int l(0), r(numEdge - 1), ans(-1);
    while(l <= r) {
        int mid = (l + r) >> 1;

        int u(x), v(y);
        for (int i = 31 - __builtin_clz(nNode); i >= 0; --i) {
            if(P2[u][i] != -1 && Pw2[u][i] <= mid)
                u = P2[u][i];
        }

        for (int i = 31 - __builtin_clz(nNode); i >= 0; --i) {
            if(P2[v][i] != -1 && Pw2[v][i] <= mid)
                v = P2[v][i];
        }

        //cout << x << ' ' << y << ' ' << u << ' ' << v << ' ' << mid << '\n';
        if(u == v && cntEdge[u] >= cntNode[u]) {
            ans = edge[mid].w;
            r = mid - 1;
        } else {
            l = mid + 1;
        }
    }

    //cout << '.' << ans << ' ' << ansTree << ".\n";
    if(ansTree < 0 || ans < 0) {
        ans = (ans < 0) ? ansTree : ans;
    } else {
        ans = min(ans, ansTree);
    }

    return ans;
}

int getMinimumFuelCapacity(int x, int y) {
    /*cout << magicFunc(x, y) << ' ' << brute(x, y) << '\n';
    if(magicFunc(x, y) != brute(x, y))
        exit(1);*/

    if(check_sub1)
        return (numNode == numEdge) ? maxw : -1;

    if(numEdge == numNode - 1)
        return sub5(x, y);

    return magicFunc(x, y);
}

#ifdef Nhoksocqt1

int main(void) {
    ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);

    #define TASK "swap"
    if(fopen(TASK".inp", "r")) {
        freopen(TASK".inp", "r", stdin);
        freopen(TASK".out", "w", stdout);
    }

    vector<int> _U, _V, _W;
    int _N, _M, _Q;
    cin >> _N >> _M >> _Q;
    _N = Random(5e1, 1e2), _M = Random(_N - 1, 2 * _N), _Q = Random(5e4, 2e5); cout << _N << ' ' << _M << ' ' << _Q << '\n';

    _U.resize(_M), _V.resize(_M), _W.resize(_M);
    for (int i = 0; i < _M; ++i) {
        cin >> _U[i] >> _V[i] >> _W[i];
        if(i < _N - 1) _U[i] = Random(max(0, i - 10), i), _V[i] = i + 1; if(i >= _N - 1) _U[i] = Random(0, _N - 2), _V[i] = Random(_U[i] + 1, _N - 1); _W[i] = Random(1, 1e5); cout << _U[i] << ' ' << _V[i] << ' ' << _W[i] << '\n';
    }

    init(_N, _M, _U, _V, _W);
    for (int t = 0; t < _Q; ++t) {
        int _X, _Y;
        cin >> _X >> _Y;
        _X = Random(0, _N - 2), _Y = Random(_X + 1, _N - 1);
        cout << "MINIMUM FUEL CAPACITY " << _X << " TO " << _Y << ": " << getMinimumFuelCapacity(_X, _Y) << '\n';
        if(t % 100 == 0)
            cerr << "RUNNING ON QUERY " << t << '\n';
    }

    return 0;
}

#endif // Nhoksocqt1
# Verdict Execution time Memory Grader output
1 Correct 3 ms 18780 KB Output is correct
2 Correct 3 ms 18780 KB Output is correct
3 Correct 3 ms 18780 KB Output is correct
4 Correct 5 ms 18780 KB Output is correct
5 Correct 4 ms 21084 KB Output is correct
6 Correct 4 ms 20964 KB Output is correct
7 Correct 4 ms 21084 KB Output is correct
8 Correct 4 ms 21084 KB Output is correct
9 Correct 220 ms 105024 KB Output is correct
10 Correct 258 ms 122736 KB Output is correct
11 Correct 265 ms 120096 KB Output is correct
12 Correct 298 ms 127296 KB Output is correct
13 Correct 215 ms 108064 KB Output is correct
14 Correct 222 ms 104768 KB Output is correct
15 Correct 341 ms 126560 KB Output is correct
16 Correct 298 ms 122852 KB Output is correct
17 Correct 312 ms 132640 KB Output is correct
18 Correct 275 ms 119208 KB Output is correct
19 Correct 64 ms 40752 KB Output is correct
20 Correct 315 ms 127052 KB Output is correct
21 Correct 282 ms 124396 KB Output is correct
22 Correct 300 ms 132296 KB Output is correct
23 Correct 264 ms 122400 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 18780 KB Output is correct
2 Correct 3 ms 18780 KB Output is correct
3 Correct 827 ms 92652 KB Output is correct
4 Correct 788 ms 97364 KB Output is correct
5 Correct 896 ms 93028 KB Output is correct
6 Correct 779 ms 97028 KB Output is correct
7 Correct 862 ms 95132 KB Output is correct
8 Correct 879 ms 92632 KB Output is correct
9 Correct 824 ms 94964 KB Output is correct
10 Correct 806 ms 92560 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 18780 KB Output is correct
2 Correct 3 ms 18780 KB Output is correct
3 Correct 3 ms 18780 KB Output is correct
4 Correct 5 ms 18780 KB Output is correct
5 Correct 4 ms 21084 KB Output is correct
6 Correct 4 ms 20964 KB Output is correct
7 Correct 4 ms 21084 KB Output is correct
8 Correct 4 ms 21084 KB Output is correct
9 Correct 3 ms 18780 KB Output is correct
10 Correct 4 ms 21084 KB Output is correct
11 Correct 4 ms 21084 KB Output is correct
12 Correct 4 ms 21084 KB Output is correct
13 Correct 4 ms 20972 KB Output is correct
14 Correct 4 ms 20828 KB Output is correct
15 Correct 4 ms 21084 KB Output is correct
16 Correct 4 ms 21084 KB Output is correct
17 Correct 4 ms 21084 KB Output is correct
18 Correct 4 ms 20828 KB Output is correct
19 Correct 4 ms 18780 KB Output is correct
20 Correct 5 ms 21084 KB Output is correct
21 Correct 4 ms 20828 KB Output is correct
22 Correct 3 ms 18780 KB Output is correct
23 Correct 3 ms 18952 KB Output is correct
24 Correct 5 ms 21084 KB Output is correct
25 Correct 5 ms 21084 KB Output is correct
26 Correct 4 ms 21080 KB Output is correct
27 Correct 4 ms 21084 KB Output is correct
28 Correct 4 ms 21084 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 18780 KB Output is correct
2 Correct 3 ms 18780 KB Output is correct
3 Correct 3 ms 18780 KB Output is correct
4 Correct 3 ms 18780 KB Output is correct
5 Correct 5 ms 18780 KB Output is correct
6 Correct 4 ms 21084 KB Output is correct
7 Correct 4 ms 20964 KB Output is correct
8 Correct 4 ms 21084 KB Output is correct
9 Correct 4 ms 21084 KB Output is correct
10 Correct 220 ms 105024 KB Output is correct
11 Correct 258 ms 122736 KB Output is correct
12 Correct 265 ms 120096 KB Output is correct
13 Correct 298 ms 127296 KB Output is correct
14 Correct 215 ms 108064 KB Output is correct
15 Correct 4 ms 21084 KB Output is correct
16 Correct 4 ms 21084 KB Output is correct
17 Correct 4 ms 21084 KB Output is correct
18 Correct 4 ms 20972 KB Output is correct
19 Correct 4 ms 20828 KB Output is correct
20 Correct 4 ms 21084 KB Output is correct
21 Correct 4 ms 21084 KB Output is correct
22 Correct 4 ms 21084 KB Output is correct
23 Correct 4 ms 20828 KB Output is correct
24 Correct 4 ms 18780 KB Output is correct
25 Correct 5 ms 21084 KB Output is correct
26 Correct 4 ms 20828 KB Output is correct
27 Correct 3 ms 18780 KB Output is correct
28 Correct 3 ms 18952 KB Output is correct
29 Correct 5 ms 21084 KB Output is correct
30 Correct 5 ms 21084 KB Output is correct
31 Correct 4 ms 21080 KB Output is correct
32 Correct 4 ms 21084 KB Output is correct
33 Correct 4 ms 21084 KB Output is correct
34 Correct 20 ms 32604 KB Output is correct
35 Correct 270 ms 126632 KB Output is correct
36 Correct 282 ms 124564 KB Output is correct
37 Correct 272 ms 122956 KB Output is correct
38 Correct 256 ms 118468 KB Output is correct
39 Correct 236 ms 118076 KB Output is correct
40 Correct 215 ms 111508 KB Output is correct
41 Correct 268 ms 125368 KB Output is correct
42 Correct 283 ms 125904 KB Output is correct
43 Correct 274 ms 118804 KB Output is correct
44 Correct 240 ms 116924 KB Output is correct
45 Correct 229 ms 108412 KB Output is correct
46 Correct 265 ms 123656 KB Output is correct
47 Correct 268 ms 120248 KB Output is correct
48 Correct 239 ms 116944 KB Output is correct
49 Correct 78 ms 53512 KB Output is correct
50 Correct 65 ms 49744 KB Output is correct
51 Correct 177 ms 92292 KB Output is correct
52 Correct 314 ms 137728 KB Output is correct
53 Correct 332 ms 132212 KB Output is correct
54 Correct 347 ms 142224 KB Output is correct
55 Correct 212 ms 115728 KB Output is correct
56 Correct 303 ms 125152 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 18780 KB Output is correct
2 Correct 3 ms 18780 KB Output is correct
3 Correct 3 ms 18780 KB Output is correct
4 Correct 5 ms 18780 KB Output is correct
5 Correct 4 ms 21084 KB Output is correct
6 Correct 4 ms 20964 KB Output is correct
7 Correct 4 ms 21084 KB Output is correct
8 Correct 4 ms 21084 KB Output is correct
9 Correct 220 ms 105024 KB Output is correct
10 Correct 258 ms 122736 KB Output is correct
11 Correct 265 ms 120096 KB Output is correct
12 Correct 298 ms 127296 KB Output is correct
13 Correct 215 ms 108064 KB Output is correct
14 Correct 222 ms 104768 KB Output is correct
15 Correct 341 ms 126560 KB Output is correct
16 Correct 298 ms 122852 KB Output is correct
17 Correct 312 ms 132640 KB Output is correct
18 Correct 275 ms 119208 KB Output is correct
19 Correct 827 ms 92652 KB Output is correct
20 Correct 788 ms 97364 KB Output is correct
21 Correct 896 ms 93028 KB Output is correct
22 Correct 779 ms 97028 KB Output is correct
23 Correct 862 ms 95132 KB Output is correct
24 Correct 879 ms 92632 KB Output is correct
25 Correct 824 ms 94964 KB Output is correct
26 Correct 806 ms 92560 KB Output is correct
27 Correct 4 ms 21084 KB Output is correct
28 Correct 4 ms 21084 KB Output is correct
29 Correct 4 ms 21084 KB Output is correct
30 Correct 4 ms 20972 KB Output is correct
31 Correct 4 ms 20828 KB Output is correct
32 Correct 4 ms 21084 KB Output is correct
33 Correct 4 ms 21084 KB Output is correct
34 Correct 4 ms 21084 KB Output is correct
35 Correct 4 ms 20828 KB Output is correct
36 Correct 20 ms 32604 KB Output is correct
37 Correct 270 ms 126632 KB Output is correct
38 Correct 282 ms 124564 KB Output is correct
39 Correct 272 ms 122956 KB Output is correct
40 Correct 256 ms 118468 KB Output is correct
41 Correct 236 ms 118076 KB Output is correct
42 Correct 215 ms 111508 KB Output is correct
43 Correct 268 ms 125368 KB Output is correct
44 Correct 283 ms 125904 KB Output is correct
45 Correct 274 ms 118804 KB Output is correct
46 Correct 240 ms 116924 KB Output is correct
47 Correct 32 ms 32848 KB Output is correct
48 Correct 784 ms 129928 KB Output is correct
49 Correct 608 ms 128676 KB Output is correct
50 Correct 639 ms 128000 KB Output is correct
51 Correct 448 ms 127412 KB Output is correct
52 Correct 401 ms 120552 KB Output is correct
53 Correct 274 ms 92664 KB Output is correct
54 Correct 705 ms 130276 KB Output is correct
55 Correct 695 ms 130368 KB Output is correct
56 Correct 1225 ms 128300 KB Output is correct
57 Correct 430 ms 122704 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 18780 KB Output is correct
2 Correct 3 ms 18780 KB Output is correct
3 Correct 3 ms 18780 KB Output is correct
4 Correct 3 ms 18780 KB Output is correct
5 Correct 5 ms 18780 KB Output is correct
6 Correct 4 ms 21084 KB Output is correct
7 Correct 4 ms 20964 KB Output is correct
8 Correct 4 ms 21084 KB Output is correct
9 Correct 4 ms 21084 KB Output is correct
10 Correct 220 ms 105024 KB Output is correct
11 Correct 258 ms 122736 KB Output is correct
12 Correct 265 ms 120096 KB Output is correct
13 Correct 298 ms 127296 KB Output is correct
14 Correct 215 ms 108064 KB Output is correct
15 Correct 222 ms 104768 KB Output is correct
16 Correct 341 ms 126560 KB Output is correct
17 Correct 298 ms 122852 KB Output is correct
18 Correct 312 ms 132640 KB Output is correct
19 Correct 275 ms 119208 KB Output is correct
20 Correct 827 ms 92652 KB Output is correct
21 Correct 788 ms 97364 KB Output is correct
22 Correct 896 ms 93028 KB Output is correct
23 Correct 779 ms 97028 KB Output is correct
24 Correct 862 ms 95132 KB Output is correct
25 Correct 879 ms 92632 KB Output is correct
26 Correct 824 ms 94964 KB Output is correct
27 Correct 806 ms 92560 KB Output is correct
28 Correct 4 ms 21084 KB Output is correct
29 Correct 4 ms 21084 KB Output is correct
30 Correct 4 ms 21084 KB Output is correct
31 Correct 4 ms 20972 KB Output is correct
32 Correct 4 ms 20828 KB Output is correct
33 Correct 4 ms 21084 KB Output is correct
34 Correct 4 ms 21084 KB Output is correct
35 Correct 4 ms 21084 KB Output is correct
36 Correct 4 ms 20828 KB Output is correct
37 Correct 20 ms 32604 KB Output is correct
38 Correct 270 ms 126632 KB Output is correct
39 Correct 282 ms 124564 KB Output is correct
40 Correct 272 ms 122956 KB Output is correct
41 Correct 256 ms 118468 KB Output is correct
42 Correct 236 ms 118076 KB Output is correct
43 Correct 215 ms 111508 KB Output is correct
44 Correct 268 ms 125368 KB Output is correct
45 Correct 283 ms 125904 KB Output is correct
46 Correct 274 ms 118804 KB Output is correct
47 Correct 240 ms 116924 KB Output is correct
48 Correct 32 ms 32848 KB Output is correct
49 Correct 784 ms 129928 KB Output is correct
50 Correct 608 ms 128676 KB Output is correct
51 Correct 639 ms 128000 KB Output is correct
52 Correct 448 ms 127412 KB Output is correct
53 Correct 401 ms 120552 KB Output is correct
54 Correct 274 ms 92664 KB Output is correct
55 Correct 705 ms 130276 KB Output is correct
56 Correct 695 ms 130368 KB Output is correct
57 Correct 1225 ms 128300 KB Output is correct
58 Correct 430 ms 122704 KB Output is correct
59 Correct 64 ms 40752 KB Output is correct
60 Correct 315 ms 127052 KB Output is correct
61 Correct 282 ms 124396 KB Output is correct
62 Correct 300 ms 132296 KB Output is correct
63 Correct 264 ms 122400 KB Output is correct
64 Correct 4 ms 18780 KB Output is correct
65 Correct 5 ms 21084 KB Output is correct
66 Correct 4 ms 20828 KB Output is correct
67 Correct 3 ms 18780 KB Output is correct
68 Correct 3 ms 18952 KB Output is correct
69 Correct 5 ms 21084 KB Output is correct
70 Correct 5 ms 21084 KB Output is correct
71 Correct 4 ms 21080 KB Output is correct
72 Correct 4 ms 21084 KB Output is correct
73 Correct 4 ms 21084 KB Output is correct
74 Correct 229 ms 108412 KB Output is correct
75 Correct 265 ms 123656 KB Output is correct
76 Correct 268 ms 120248 KB Output is correct
77 Correct 239 ms 116944 KB Output is correct
78 Correct 78 ms 53512 KB Output is correct
79 Correct 65 ms 49744 KB Output is correct
80 Correct 177 ms 92292 KB Output is correct
81 Correct 314 ms 137728 KB Output is correct
82 Correct 332 ms 132212 KB Output is correct
83 Correct 347 ms 142224 KB Output is correct
84 Correct 212 ms 115728 KB Output is correct
85 Correct 303 ms 125152 KB Output is correct
86 Correct 248 ms 54792 KB Output is correct
87 Correct 1126 ms 128352 KB Output is correct
88 Correct 1216 ms 128504 KB Output is correct
89 Correct 1230 ms 112908 KB Output is correct
90 Correct 785 ms 57900 KB Output is correct
91 Correct 920 ms 62372 KB Output is correct
92 Correct 1444 ms 98980 KB Output is correct
93 Correct 1661 ms 142648 KB Output is correct
94 Correct 1756 ms 136428 KB Output is correct
95 Correct 1608 ms 145896 KB Output is correct
96 Execution timed out 2015 ms 131904 KB Time limit exceeded
97 Halted 0 ms 0 KB -