# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
960156 |
2024-04-09T18:35:39 Z |
Pety |
Magneti (COCI21_magneti) |
C++17 |
|
246 ms |
106580 KB |
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6+2;
const int mod = 1e9 + 7;
template <class T> T pow(T a, int64_t exp) {
T res(1);
while (exp) {
if (exp % 2)
res = res * a;
a = a * a;
exp /= 2;
}
return res;
}
template <decltype(auto) mode> struct ZP;
using ZPP = ZP<mod>;
template <decltype(auto) mod, decltype(auto) R> struct Poly {
using ZPP = ZP<mod>;
Poly(ZPP x = 0) : A(0), B(x) {}
Poly(ZPP A, ZPP B) : A(A), B(B) {}
Poly operator*(Poly that) const {
ZPP a = A * that.A;
ZPP b = A * that.B + B * that.A;
ZPP c = B * that.B;
return Poly(b, c + a * R);
}
ZPP A, B;
};
template <decltype(auto) mod> struct ZP {
ZP(int64_t x = 0) : x(x % mod) {
if (this->x < 0)
this->x += mod;
}
ZP operator*(ZP that) const { return ZP(int64_t(x) * that.x); }
ZP &operator+=(ZP that) {
if ((x += that.x) >= mod)
x -= mod;
return *this;
}
ZP operator-=(ZP that) {
if ((x -= that.x) < 0)
x += mod;
return *this;
}
ZP operator*=(ZP that) { return *this = *this * that; }
ZP operator-(ZP that) const { return ZP(*this) -= that; }
ZP operator+(ZP that) const { return ZP(*this) += that; }
ZP operator-() const { return ZP(mod - x); }
bool operator==(ZP that) const { return x == that.x; }
bool operator!=(ZP that) const { return x != that.x; }
friend ZP operator+(int x, ZP that) { return ZP(x) + that; }
friend ZP operator-(int x, ZP that) { return ZP(x) - that; }
ZP operator/(ZP that) const { return *this * that.inv(); }
ZP inv() const { return pow(*this, mod - 2); }
explicit operator int() const { return x; }
explicit operator bool() const { return x; }
friend ostream &operator<<(ostream &stream, ZP that) {
return stream << that.x;
}
bool operator<(ZP that) const { return x < that.x; }
optional<ZP> sqrt() {
if (x < 2) {
return *this;
}
if (pow(*this, (mod - 1) / 2) == -1)
return nullopt;
static mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
while (true) {
ZP z = rnd();
if (z * z == *this)
return z;
static ZP value;
value = *this;
Poly<(mod), (value)> P(1, z);
P = pow(P, mod / 2);
if (P.A != 0) {
assert(P.A.inv() * P.A.inv() == *this);
return P.A.inv();
}
}
}
int x;
};
ZPP dp[52][52][10002];
ZPP fact[10100];
int n, l, a[52];
ZPP comb (int n, int k) {
return fact[n] / fact[k] / fact[n - k];
}
int main ()
{
ios_base::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> l;
for (int i = 1; i <= n; i++)
cin >> a[i];
fact[0] = 1;
for (int i = 1; i <= l + n; i++)
fact[i] = fact[i - 1] * i;
sort(a + 1, a + n + 1);
dp[0][0][1] = 1;
for (int i = 0; i < n; i++) {
for (int j = 0; j <= n; j++)
for (int k = 0; k <= l; k++) {
dp[i + 1][j + 1][k] += ZPP (j + 1) * dp[i][j][k];
if (j && k + a[i + 1] <= l)
dp[i + 1][j][k + a[i + 1]] += ZPP(2*j)*dp[i][j][k];
if (j > 1 && k + 2 * a[i + 1] <= l)
dp[i + 1][j - 1][k + 2 * a[i + 1]] += ZPP(j - 1) * dp[i][j][k];
}
}
ZPP ans = 0;
for (int d = 1; d <= l; d++) {
ans += comb(l - d + n, n) * dp[n][1][d];
}
cout << ans;
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
239 ms |
106332 KB |
Output is correct |
2 |
Correct |
31 ms |
106332 KB |
Output is correct |
3 |
Correct |
42 ms |
106216 KB |
Output is correct |
4 |
Correct |
35 ms |
106324 KB |
Output is correct |
5 |
Correct |
41 ms |
106328 KB |
Output is correct |
6 |
Correct |
88 ms |
106328 KB |
Output is correct |
7 |
Correct |
85 ms |
106332 KB |
Output is correct |
8 |
Correct |
31 ms |
106160 KB |
Output is correct |
9 |
Correct |
61 ms |
106136 KB |
Output is correct |
10 |
Correct |
31 ms |
106328 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
40 ms |
106328 KB |
Output is correct |
2 |
Correct |
32 ms |
106340 KB |
Output is correct |
3 |
Correct |
43 ms |
106168 KB |
Output is correct |
4 |
Correct |
34 ms |
106324 KB |
Output is correct |
5 |
Correct |
42 ms |
106324 KB |
Output is correct |
6 |
Correct |
34 ms |
106200 KB |
Output is correct |
7 |
Correct |
41 ms |
106332 KB |
Output is correct |
8 |
Correct |
32 ms |
106088 KB |
Output is correct |
9 |
Correct |
33 ms |
106324 KB |
Output is correct |
10 |
Correct |
35 ms |
106576 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
33 ms |
106236 KB |
Output is correct |
2 |
Correct |
34 ms |
106328 KB |
Output is correct |
3 |
Correct |
33 ms |
106324 KB |
Output is correct |
4 |
Correct |
32 ms |
106324 KB |
Output is correct |
5 |
Correct |
35 ms |
106320 KB |
Output is correct |
6 |
Correct |
31 ms |
106324 KB |
Output is correct |
7 |
Correct |
33 ms |
106196 KB |
Output is correct |
8 |
Correct |
33 ms |
106156 KB |
Output is correct |
9 |
Correct |
32 ms |
106116 KB |
Output is correct |
10 |
Correct |
32 ms |
106332 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
239 ms |
106332 KB |
Output is correct |
2 |
Correct |
31 ms |
106332 KB |
Output is correct |
3 |
Correct |
42 ms |
106216 KB |
Output is correct |
4 |
Correct |
35 ms |
106324 KB |
Output is correct |
5 |
Correct |
41 ms |
106328 KB |
Output is correct |
6 |
Correct |
88 ms |
106328 KB |
Output is correct |
7 |
Correct |
85 ms |
106332 KB |
Output is correct |
8 |
Correct |
31 ms |
106160 KB |
Output is correct |
9 |
Correct |
61 ms |
106136 KB |
Output is correct |
10 |
Correct |
31 ms |
106328 KB |
Output is correct |
11 |
Correct |
40 ms |
106328 KB |
Output is correct |
12 |
Correct |
32 ms |
106340 KB |
Output is correct |
13 |
Correct |
43 ms |
106168 KB |
Output is correct |
14 |
Correct |
34 ms |
106324 KB |
Output is correct |
15 |
Correct |
42 ms |
106324 KB |
Output is correct |
16 |
Correct |
34 ms |
106200 KB |
Output is correct |
17 |
Correct |
41 ms |
106332 KB |
Output is correct |
18 |
Correct |
32 ms |
106088 KB |
Output is correct |
19 |
Correct |
33 ms |
106324 KB |
Output is correct |
20 |
Correct |
35 ms |
106576 KB |
Output is correct |
21 |
Correct |
33 ms |
106236 KB |
Output is correct |
22 |
Correct |
34 ms |
106328 KB |
Output is correct |
23 |
Correct |
33 ms |
106324 KB |
Output is correct |
24 |
Correct |
32 ms |
106324 KB |
Output is correct |
25 |
Correct |
35 ms |
106320 KB |
Output is correct |
26 |
Correct |
31 ms |
106324 KB |
Output is correct |
27 |
Correct |
33 ms |
106196 KB |
Output is correct |
28 |
Correct |
33 ms |
106156 KB |
Output is correct |
29 |
Correct |
32 ms |
106116 KB |
Output is correct |
30 |
Correct |
32 ms |
106332 KB |
Output is correct |
31 |
Correct |
230 ms |
106324 KB |
Output is correct |
32 |
Correct |
156 ms |
106328 KB |
Output is correct |
33 |
Correct |
226 ms |
106308 KB |
Output is correct |
34 |
Correct |
72 ms |
106324 KB |
Output is correct |
35 |
Correct |
246 ms |
106576 KB |
Output is correct |
36 |
Correct |
43 ms |
106324 KB |
Output is correct |
37 |
Correct |
230 ms |
106324 KB |
Output is correct |
38 |
Correct |
63 ms |
106332 KB |
Output is correct |
39 |
Correct |
228 ms |
106324 KB |
Output is correct |
40 |
Correct |
88 ms |
106332 KB |
Output is correct |
41 |
Correct |
244 ms |
106324 KB |
Output is correct |
42 |
Correct |
32 ms |
106276 KB |
Output is correct |
43 |
Correct |
226 ms |
106580 KB |
Output is correct |
44 |
Correct |
54 ms |
106328 KB |
Output is correct |
45 |
Correct |
225 ms |
106324 KB |
Output is correct |
46 |
Correct |
35 ms |
106576 KB |
Output is correct |
47 |
Correct |
66 ms |
106208 KB |
Output is correct |
48 |
Correct |
46 ms |
106332 KB |
Output is correct |
49 |
Correct |
37 ms |
106436 KB |
Output is correct |
50 |
Correct |
32 ms |
106332 KB |
Output is correct |