#line 1 "Palindromes.cpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
template <class T> constexpr T infty = 0;
template <> constexpr int infty<int> = 1'000'000'000;
template <> constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <> constexpr u32 infty<u32> = infty<int>;
template <> constexpr u64 infty<u64> = infty<ll>;
template <> constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <> constexpr double infty<double> = infty<ll>;
template <> constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vector<vc<T>>;
template <class T> using vvvc = vector<vvc<T>>;
template <class T> using vvvvc = vector<vvvc<T>>;
template <class T> using vvvvvc = vector<vvvvc<T>>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T> T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); }
template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); }
template <typename T> pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U> T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a : A)
sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T> T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T> T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T> T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T> T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok)
assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S> inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S> inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0)
B.erase(B.begin());
return B;
}
// stable sort
template <typename T> vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
// palindromic tree を作る
template <int sigma> struct Palindromic_Tree {
struct Node {
std::array<int, sigma> TO;
int link;
int length;
std::pair<int, int> pos;
Node(int link, int length, int l, int r)
: link(link), length(length), pos({l, r}) {
std::fill(TO.begin(), TO.end(), -1);
}
};
std::vector<Node> nodes;
std::vector<int> path;
template <typename STRING> Palindromic_Tree(const STRING &S, char off) {
nodes.emplace_back(Node(-1, -1, 0, -1));
nodes.emplace_back(Node(0, 0, 0, 0));
int p = 0;
FOR(i, len(S)) {
path.eb(p);
int x = S[i] - off;
while (p) {
int j = i - 1 - nodes[p].length;
bool can = (j >= 0 && S[j] - off == x);
if (!can) {
p = nodes[p].link;
continue;
}
break;
}
if (nodes[p].TO[x] != -1) {
p = nodes[p].TO[x];
continue;
}
int to = len(nodes);
int l = i - 1 - nodes[p].length;
int r = i + 1;
nodes[p].TO[x] = to;
int link;
if (p == 0)
link = 1;
if (p != 0) {
while (1) {
p = nodes[p].link;
int j = i - 1 - nodes[p].length;
bool can = (j >= 0 && S[j] - off == x) || (p == 0);
if (can)
break;
}
assert(nodes[p].TO[x] != -1);
link = nodes[p].TO[x];
}
nodes.eb(Node(link, r - l, l, r));
p = to;
}
path.eb(p);
}
// node ごとの出現回数
vc<int> count() {
vc<int> res(len(nodes));
for (auto &&p : path)
res[p]++;
FOR_R(k, 1, len(nodes)) {
int link = nodes[k].link;
res[link] += res[k];
}
return res;
}
};
constexpr std::int64_t inf = 2E18;
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::string S;
std::cin >> S;
Palindromic_Tree<26> X(S, 'a');
auto cnt = X.count();
std::int64_t ans = -inf;
for (int i = 2; i < X.nodes.size(); i++) {
auto &&[l, r] = X.nodes[i].pos;
ans = std::max(ans, static_cast<std::int64_t>(r - l) * cnt[i]);
}
std::cout << ans << "\n";
return 0;
}
Compilation message
Palindromes.cpp: In function 'int main()':
Palindromes.cpp:277:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<Palindromic_Tree<26>::Node, std::allocator<Palindromic_Tree<26>::Node> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
1 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
1 ms |
348 KB |
Output is correct |
5 |
Correct |
1 ms |
760 KB |
Output is correct |
6 |
Correct |
1 ms |
348 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
0 ms |
600 KB |
Output is correct |
9 |
Correct |
0 ms |
348 KB |
Output is correct |
10 |
Correct |
0 ms |
348 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
12 |
Correct |
0 ms |
348 KB |
Output is correct |
13 |
Correct |
0 ms |
348 KB |
Output is correct |
14 |
Correct |
0 ms |
348 KB |
Output is correct |
15 |
Correct |
0 ms |
348 KB |
Output is correct |
16 |
Correct |
1 ms |
348 KB |
Output is correct |
17 |
Correct |
0 ms |
348 KB |
Output is correct |
18 |
Correct |
0 ms |
348 KB |
Output is correct |
19 |
Correct |
0 ms |
348 KB |
Output is correct |
20 |
Correct |
0 ms |
344 KB |
Output is correct |
21 |
Correct |
0 ms |
348 KB |
Output is correct |
22 |
Correct |
1 ms |
348 KB |
Output is correct |
23 |
Correct |
0 ms |
348 KB |
Output is correct |
24 |
Correct |
0 ms |
348 KB |
Output is correct |
25 |
Correct |
1 ms |
344 KB |
Output is correct |
26 |
Correct |
0 ms |
348 KB |
Output is correct |
27 |
Correct |
0 ms |
348 KB |
Output is correct |
28 |
Correct |
0 ms |
348 KB |
Output is correct |
29 |
Correct |
0 ms |
348 KB |
Output is correct |
30 |
Correct |
0 ms |
348 KB |
Output is correct |
31 |
Correct |
0 ms |
348 KB |
Output is correct |
32 |
Correct |
0 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
604 KB |
Output is correct |
2 |
Correct |
1 ms |
604 KB |
Output is correct |
3 |
Correct |
1 ms |
604 KB |
Output is correct |
4 |
Correct |
0 ms |
604 KB |
Output is correct |
5 |
Correct |
1 ms |
604 KB |
Output is correct |
6 |
Correct |
1 ms |
604 KB |
Output is correct |
7 |
Correct |
1 ms |
604 KB |
Output is correct |
8 |
Correct |
0 ms |
604 KB |
Output is correct |
9 |
Correct |
0 ms |
856 KB |
Output is correct |
10 |
Correct |
0 ms |
600 KB |
Output is correct |
11 |
Correct |
0 ms |
348 KB |
Output is correct |
12 |
Correct |
0 ms |
604 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
2336 KB |
Output is correct |
2 |
Correct |
2 ms |
2448 KB |
Output is correct |
3 |
Correct |
2 ms |
2336 KB |
Output is correct |
4 |
Correct |
2 ms |
2336 KB |
Output is correct |
5 |
Correct |
2 ms |
2344 KB |
Output is correct |
6 |
Correct |
2 ms |
2336 KB |
Output is correct |
7 |
Correct |
2 ms |
2336 KB |
Output is correct |
8 |
Correct |
1 ms |
604 KB |
Output is correct |
9 |
Correct |
1 ms |
604 KB |
Output is correct |
10 |
Correct |
1 ms |
1548 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
10 ms |
16900 KB |
Output is correct |
2 |
Correct |
10 ms |
18436 KB |
Output is correct |
3 |
Correct |
10 ms |
18088 KB |
Output is correct |
4 |
Correct |
10 ms |
18180 KB |
Output is correct |
5 |
Correct |
10 ms |
18436 KB |
Output is correct |
6 |
Correct |
8 ms |
17388 KB |
Output is correct |
7 |
Correct |
9 ms |
18552 KB |
Output is correct |
8 |
Correct |
2 ms |
1372 KB |
Output is correct |
9 |
Correct |
4 ms |
6920 KB |
Output is correct |
10 |
Correct |
8 ms |
16900 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
53 ms |
66656 KB |
Output is correct |
2 |
Correct |
29 ms |
65876 KB |
Output is correct |
3 |
Correct |
30 ms |
66264 KB |
Output is correct |
4 |
Correct |
31 ms |
66176 KB |
Output is correct |
5 |
Correct |
31 ms |
66132 KB |
Output is correct |
6 |
Correct |
28 ms |
66636 KB |
Output is correct |
7 |
Correct |
22 ms |
34912 KB |
Output is correct |
8 |
Correct |
4 ms |
3548 KB |
Output is correct |
9 |
Correct |
4 ms |
3528 KB |
Output is correct |
10 |
Correct |
24 ms |
35460 KB |
Output is correct |
11 |
Correct |
27 ms |
64852 KB |
Output is correct |
12 |
Correct |
6 ms |
6832 KB |
Output is correct |