Submission #957504

# Submission time Handle Problem Language Result Execution time Memory
957504 2024-04-03T22:39:14 Z Hadi_Alhamed Rabbit Carrot (LMIO19_triusis) C++17
100 / 100
28 ms 7176 KB
//to live is to die
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
typedef long long int ll;
typedef unsigned long long ull;
typedef pair<int, int> pi;
typedef pair<ll, ll> pl;
typedef vector<int> vi;
typedef vector<long long> vl;
typedef vector<pair<int, int>> vpi;
typedef vector<pair<ll, ll>> vpl;
#define Clear(a, n)              \
    for (int i = 0; i <= n; i++) \
    {                            \
        a[i] = 0;                \
    }
#define clearMat(a, n, m, d)         \
    for (int i = 0; i <= n; i++)     \
    {                                \
        for (int j = 0; j <= m; j++) \
            a[i][j] = d;             \
    }
#define YES cout << "YES\n"
#define NO cout << "NO\n"
#define PB push_back
#define PF push_front
#define MP make_pair
#define F first
#define S second
#define rep(i, n) for (int i = 0; i < n; i++)
#define repe(i, j, n) for (int i = j; i < n; i++)
#define SQ(a) (a) * (a)
#define rep1(i, n) for (int i = 1; i <= n; i++)
#define Rrep(i, start, finish) for (int i = start; start >= finish; i--)
#define db(x)  cerr << #x <<" "; _print(x); cerr << endl;

#define forn(i, Start, End, step) for (int i = Start; i <= End; i += step)
#define rforn(i, Start, End, step) for (int i = Start; i >= End; i -= step)
#define all(v) v.begin(), v.end()
#define rall(v) v.rbegin(), v.rend()
// ll arr[SIZE];
/*
how to find n % mod ; n < 0?
x = (n+mod)%mod
if(x < 0) x += mod;
*/
void _print(int x)
{
    cerr << x;
}
void _print(ll x)
{
    cerr << x;
}
void _print(string x)
{
    cerr << x;
}
void _print(char x)
{
    cerr << x;
}
void _print(double x)
{
    cerr << x;
}
void _print(ull x)
{
    cerr << x;
}
void _print(vl x)
{
    for(auto e : x)
    {
        cerr << e << " ";
    }
    cerr << "\n";
}
void print(vpi x)
{
    for(auto e : x)
    {
        cerr << e.F << " " << e.S << "\n";
    }
    cerr << "\n";
}
void _print(vi x)
{
    for(auto e : x)
    {
        cerr << e << " ";
    }
    cerr << "\n";
}

void _print(deque<ll>x)
{
    for(auto e : x)
    {
        cerr << e << " ";
    }
    cerr << "\n";
}
//order_of_key(k): # of elements less than k (which is the index of x = k)
//find_by_order(k); iterator of the k-th element
template <typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template <typename T>
using ordered_multiset = tree<T, null_type,  less_equal <T>, rb_tree_tag, tree_order_statistics_node_update>;
template<class T> bool ckmin(T& a, const T& b)
{
    return b<a?a=b,1:0;
}
template<class T> bool ckmax(T& a, const T& b)
{
    return a<b?a=b,1:0;
}
template<typename T> istream& operator>>(istream& in, vector<T>& a)
{
    for(auto &x : a) in >> x;
    return in;
};
template<typename T> ostream& operator<<(ostream& out, vector<T>& a)
{
    for(auto &x : a) out << x << ' ';
    return out;
};

// priority_queue<data type , the container that would hold the values , greater<pair<int,int>>>
// greater means that we want the smallest value on top
// less means that we want the largest
// x ^ (n) mod m = ( (x mod m)^(n) ) mod m
char to_char(int num)
{
    return (char)(num + '0');
}

ll const MAX = 1e18+1;
ll const oo = 1e18 + 1;
ll const INF = 1e9 + 10;
const ll MOD = 1e9 + 7;
ll const SIZE = 2e5 + 900;
//const int MAX_N = 100'005;
const int LOG = 20;
void solve()
{
    ll N , M;
    cin >> N >> M;
    vl A(N), vec;
    rep(i , N)
    {
        cin >> A[i];
        ll val = (i + 1LL)*M - A[i];
        if(val >= 0)
        {
            vec.PB(val);
        }
        //negative value will be changed always
    }
    vl dp((int)vec.size() + 1 , 1e18);
    dp[0] = -1e18;
    int LIS = 0;
    for(ll& val : vec)
    {
        int L = upper_bound(all(dp) , val) - dp.begin();
        if(dp[L - 1] <= val && val <= dp[L])
        {
            dp[L] = val;
            LIS = max(LIS , L);
        }
    }
    cout << N - LIS << "\n";

}

int main()
{
    ios_base::sync_with_stdio(0);
    cin.tie(0);
//    freopen("cowjog.in" , "r" , stdin);
//    freopen("cowjog.out", "w" , stdout);

    int T = 1;
//    cin >> T;
    while(T--)
    {
        solve();
    }
    return 0;
}

/* stuff you should look for
 * WRITE STUFF DOWN,  ON PAPER
 * BFS THEN DFS
 * int overflow, array bounds
 * special cases (n=1?)
 * do sm th instead of nothing and stay organized
 * DON'T GET STUCK ON ONE APPROACH
 * (STUCK?)******** Try to simplify the problem(keeping in mind the main problem), ():
 * 1- problem to subProblem
 * 2- from simple to complex: start with a special
 *    problem and then try to update the solution for general case
 *    -(constraints - > solve it with none , one,two ... of them till you reach the given problem
      -(no constraints - > try to give it some)
      -how a special case may be incremented
 * 3-Simplification by Assumptions
 * REVERSE PROBLEM
 * PROBLEM ABSTRACTION
 * SMALL O BSERVATIONS MIGHT HELP ALOT
 * WATCH OUT FOR TIME
 * RETHINK YOUR IDEA,BETTER IDEA, APPROACH?
 * CORRECT IDEA, NEED MORE OBSERVATIONS
 * CORRECT APPROACH, WRONG IDEA
 * WRONG APPROACH
 * THINK CONCRETE THEN SYMBOL,
 * having the solution for the first m state , can we solve it for m + 1 ?
 * in many cases incremental thinking needs data sorting
 */
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 452 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 344 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 500 KB Output is correct
9 Correct 0 ms 344 KB Output is correct
10 Correct 0 ms 344 KB Output is correct
11 Correct 1 ms 392 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 600 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 452 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 344 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 500 KB Output is correct
9 Correct 0 ms 344 KB Output is correct
10 Correct 0 ms 344 KB Output is correct
11 Correct 1 ms 392 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 600 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 344 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 1 ms 600 KB Output is correct
21 Correct 1 ms 604 KB Output is correct
22 Correct 1 ms 348 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 1 ms 604 KB Output is correct
25 Correct 1 ms 604 KB Output is correct
26 Correct 1 ms 604 KB Output is correct
27 Correct 1 ms 344 KB Output is correct
28 Correct 1 ms 604 KB Output is correct
29 Correct 1 ms 604 KB Output is correct
30 Correct 1 ms 604 KB Output is correct
31 Correct 1 ms 604 KB Output is correct
32 Correct 1 ms 604 KB Output is correct
33 Correct 1 ms 600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 1 ms 344 KB Output is correct
12 Correct 1 ms 604 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 1 ms 604 KB Output is correct
15 Correct 1 ms 604 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 1 ms 600 KB Output is correct
18 Correct 1 ms 348 KB Output is correct
19 Correct 0 ms 452 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 1 ms 344 KB Output is correct
24 Correct 0 ms 348 KB Output is correct
25 Correct 0 ms 500 KB Output is correct
26 Correct 0 ms 344 KB Output is correct
27 Correct 0 ms 344 KB Output is correct
28 Correct 1 ms 392 KB Output is correct
29 Correct 1 ms 348 KB Output is correct
30 Correct 0 ms 348 KB Output is correct
31 Correct 0 ms 600 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
33 Correct 0 ms 348 KB Output is correct
34 Correct 1 ms 348 KB Output is correct
35 Correct 1 ms 348 KB Output is correct
36 Correct 1 ms 348 KB Output is correct
37 Correct 1 ms 600 KB Output is correct
38 Correct 1 ms 604 KB Output is correct
39 Correct 1 ms 604 KB Output is correct
40 Correct 1 ms 604 KB Output is correct
41 Correct 1 ms 348 KB Output is correct
42 Correct 1 ms 604 KB Output is correct
43 Correct 1 ms 600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 0 ms 344 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 1 ms 600 KB Output is correct
15 Correct 1 ms 604 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 1 ms 604 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 1 ms 604 KB Output is correct
21 Correct 1 ms 344 KB Output is correct
22 Correct 1 ms 604 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 1 ms 604 KB Output is correct
25 Correct 1 ms 604 KB Output is correct
26 Correct 1 ms 604 KB Output is correct
27 Correct 1 ms 600 KB Output is correct
28 Correct 1 ms 348 KB Output is correct
29 Correct 0 ms 452 KB Output is correct
30 Correct 0 ms 348 KB Output is correct
31 Correct 0 ms 348 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
33 Correct 1 ms 344 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 0 ms 500 KB Output is correct
36 Correct 0 ms 344 KB Output is correct
37 Correct 0 ms 344 KB Output is correct
38 Correct 1 ms 392 KB Output is correct
39 Correct 1 ms 348 KB Output is correct
40 Correct 0 ms 348 KB Output is correct
41 Correct 0 ms 600 KB Output is correct
42 Correct 0 ms 348 KB Output is correct
43 Correct 0 ms 348 KB Output is correct
44 Correct 22 ms 5844 KB Output is correct
45 Correct 18 ms 3932 KB Output is correct
46 Correct 23 ms 5428 KB Output is correct
47 Correct 23 ms 5580 KB Output is correct
48 Correct 22 ms 6056 KB Output is correct
49 Correct 23 ms 6336 KB Output is correct
50 Correct 28 ms 6404 KB Output is correct
51 Correct 27 ms 7176 KB Output is correct
52 Correct 22 ms 6100 KB Output is correct
53 Correct 13 ms 3164 KB Output is correct
54 Correct 23 ms 6168 KB Output is correct
55 Correct 23 ms 6356 KB Output is correct