Submission #956056

#TimeUsernameProblemLanguageResultExecution timeMemory
956056frodakcinFestivals in JOI Kingdom 2 (JOI23_festival2)C++17
100 / 100
394 ms6148 KiB
#include <iostream> #include <vector> #include <cassert> #include <complex> using ll = long long; int MOD = 998244353; #ifdef LOCAL template<typename T> struct vector: std::vector<T> { template<typename... V> vector(V&&... args): std::vector<T>(std::forward<V>(args)...) {} T& operator [](size_t idx) {return vector::at(idx);} T const& operator[](size_t idx) const {return vector::at(idx);} }; #else using std::vector; #endif using std::pair, std::cin, std::cout; #define rep(i, a, b) for(int i = a; i < (b); ++i) #define all(x) std::begin(x), std::end(x) #define sz(x) (int)(x).size() typedef long long ll; typedef pair<int, int> pii; typedef vector<int> vi; ll euclid(ll a, ll b, ll &x, ll &y) { if (!b) return x = 1, y = 0, a; ll d = euclid(b, a % b, y, x); return y -= a/b * x, d; } struct mint { int v; explicit operator int() {return v;} mint(): v(0) {} mint(int z) { if(z < -MOD || MOD <= z) z %= MOD; if (z < 0) z += MOD; v = z; } mint(ll z) { z %= MOD; if (z < 0) z += MOD; v = z; } friend mint invert(mint a) { ll x, y, g = euclid(a.v, MOD, x, y); assert(g == 1); return mint(x); } mint& operator+= (mint const& o) {if((v+=o.v)>=MOD) v-=MOD; return *this;} mint& operator-= (mint const& o) {if((v-=o.v)<0) v+=MOD; return *this;} mint& operator*= (mint const& o) {v=(ll)v*o.v%MOD; return *this;} mint& operator/= (mint const& o) {return *this *= invert(o);} friend mint operator+ (mint a, mint const& b) {return a+=b;} friend mint operator- (mint a, mint const& b) {return a-=b;} friend mint operator* (mint a, mint const& b) {return a*=b;} friend mint operator/ (mint const& a, mint const& b) {return a*invert(b);} }; using std::complex, std::imag, std::real, std::polar, std::acos; using namespace std::complex_literals; typedef complex<double> C; typedef vector<double> vd; void fft(vector<C>& a) { int n = sz(a), L = 31 - __builtin_clz(n); static vector<complex<long double>> R(2, 1); static vector<C> rt(2, 1); // (^ 10% faster if double) for (static int k = 2; k < n; k *= 2) { R.resize(n); rt.resize(n); auto x = polar(1.0L, acos(-1.0L) / k); rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2]; } vi rev(n); rep(i,0,n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2; rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]); for (int k = 1; k < n; k *= 2) for (int i = 0; i < n; i += 2 * k) rep(j,0,k) { // C z = rt[j+k] * a[i+j+k]; // (25% faster if hand-rolled) /// include-line auto x = (double *)&rt[j+k], y = (double *)&a[i+j+k]; /// exclude-line C z(x[0]*y[0] - x[1]*y[1], x[0]*y[1] + x[1]*y[0]); /// exclude-line a[i + j + k] = a[i + j] - z; a[i + j] += z; } } vd conv(const vd& a, const vd& b) { if (a.empty() || b.empty()) return {}; vd res(sz(a) + sz(b) - 1); int L = 32 - __builtin_clz(sz(res)), n = 1 << L; vector<C> in(n), out(n); copy(all(a), begin(in)); rep(i,0,sz(b)) in[i].imag(b[i]); fft(in); for (C& x : in) x *= x; rep(i,0,n) out[i] = in[-i & (n - 1)] - conj(in[i]); fft(out); rep(i,0,sz(res)) res[i] = imag(out[i]) / (4 * n); return res; } typedef vector<ll> vl; vl convMod(const vl &a, const vl &b) { if (a.empty() || b.empty()) return {}; vl res(sz(a) + sz(b) - 1); int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(MOD)); vector<C> L(n), R(n), outs(n), outl(n); rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut); rep(i,0,sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut); fft(L), fft(R); rep(i,0,n) { int j = -i & (n - 1); outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n); outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i; } fft(outl), fft(outs); rep(i,0,sz(res)) { ll av = ll(real(outl[i])+.5), cv = ll(imag(outs[i])+.5); ll bv = ll(imag(outl[i])+.5) + ll(real(outs[i])+.5); res[i] = ((av % MOD * cut + bv) % MOD * cut + cv) % MOD; } return res; } vector<mint> multiply(vector<mint> &&a, vector<mint> &&b) { vl al, bl; al.resize(a.size()); bl.resize(b.size()); for(int i = 0;i < a.size(); ++i) al[i] = (int)a[i]; for(int i = 0;i < b.size(); ++i) bl[i] = (int)b[i]; vl res = convMod(al, bl); vector<mint> ans(res.size()); for(int i = 0;i < ans.size(); ++i) ans[i] = mint(res[i]); return ans; } int const maxn = 2e4 + 10; mint fac[2*maxn],invfac[2*maxn]; int main(){ int N; cin.tie(0);cin.sync_with_stdio(0); cin >> N >> MOD; fac[0] = mint(1);invfac[0] = mint(1); for(int i=1; i<2*maxn; i++){ fac[i] = (fac[i-1] * mint(i)); invfac[i] = mint(1) / fac[i]; } vector<mint> dp(N + 1); vector<mint> sum_dp(N + 1); dp[0] = mint(1); sum_dp[0] = mint(1); auto induce = [&](int l, int m, int r) { auto apply = [&](vector<mint>& ans, auto &&dep_i, auto &&dep_j, auto &&dep_i_j) { // ans[i] += fj(j) * fij(i+j) // => ans[K+i-1] += fj(K-j-1) * fij(i+j) // => ans[K+i-1 - (off)] += fj(K-j-1) * fij(i+j - off) int K = m; int off = l + m; vector<mint> f1(K - l); for(int j = l;j < m; ++j) f1[K - j - 1] = dep_j(j); vector<mint> f2; for(int ij = l + m;ij <= r + m - 2; ++ij) f2.push_back(dep_i_j(ij)); vector<mint> res = multiply(std::move(f1), std::move(f2)); for(int i = m;i < r; ++i) ans[i] += res[i + K - 1 - (off)] * dep_i(i); }; apply(dp, [&](int i){return mint(1);}, [&](int j){return dp[j]*invfac[2*j];}, [&](int ij){return fac[ij-1];}); apply(sum_dp, [&](int i){return mint(i);}, [&](int j){return dp[j]*invfac[2*j];}, [&](int ij){return fac[ij-1];}); apply(sum_dp, [&](int i){return mint(1);}, [&](int j){return dp[j]*invfac[2*j]*mint(-j);}, [&](int ij){return fac[ij-1];}); apply(dp, [&](int i){return mint(i);}, [&](int j){return sum_dp[j]*invfac[2*j+1];}, [&](int ij){return fac[ij-1];}); apply(dp, [&](int i){return mint(1);}, [&](int j){return sum_dp[j]*invfac[2*j+1]*mint(-j-1);}, [&](int ij){return fac[ij-1];}); apply(sum_dp, [&](int i){return mint(i) * mint(i) - mint(i);}, [&](int j){return sum_dp[j]*invfac[2*j+1];}, [&](int ij){return fac[ij-1];}); apply(sum_dp, [&](int i){return mint(1);}, [&](int j){return sum_dp[j]*invfac[2*j+1] * (mint(j) * mint(j) + mint(j));}, [&](int ij){return fac[ij-1];}); apply(sum_dp, [&](int i){return mint(-2*i);}, [&](int j){return sum_dp[j]*invfac[2*j+1]*mint(j);}, [&](int ij){return fac[ij-1];}); }; auto solve = [&](auto const& solve, int l, int r) ->void{ if(l + 1 == r) return; int m = l + (r - l) / 2; solve(solve, l, m); induce(l, m, r); solve(solve, m, r); }; solve(solve, 0, N + 1); mint default_ans(1); for(int i = N * 2 - 1;i >= 1; i -= 2) default_ans *= mint(i); #ifdef LOCAL for(int i = 0;i <= N; ++i) printf("%d -- %d\n", dp[i], sum_dp[i]); #endif printf("%d\n", (int)(default_ans - dp[N])); return 0; }

Compilation message (stderr)

festival2.cpp: In function 'std::vector<mint> multiply(std::vector<mint>&&, std::vector<mint>&&)':
festival2.cpp:128:18: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<mint>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  128 |  for(int i = 0;i < a.size(); ++i) al[i] = (int)a[i];
      |                ~~^~~~~~~~~~
festival2.cpp:129:18: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<mint>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  129 |  for(int i = 0;i < b.size(); ++i) bl[i] = (int)b[i];
      |                ~~^~~~~~~~~~
festival2.cpp:132:18: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<mint>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  132 |  for(int i = 0;i < ans.size(); ++i) ans[i] = mint(res[i]);
      |                ~~^~~~~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...