Submission #955104

# Submission time Handle Problem Language Result Execution time Memory
955104 2024-03-29T11:50:13 Z cristi_tanase Cats or Dogs (JOI18_catdog) C++17
38 / 100
3000 ms 23364 KB
#include "catdog.h"
#include <bits/stdc++.h>

using namespace std;

const int nmax = 1e5 + 5, mod = 1e9 + 7, inf = 2e8;
int n, m;
vector<int> g[nmax], path[nmax];
int sz[nmax], heavy[nmax], depth[nmax], top[nmax], parent[nmax], pos[nmax], crtpos, bottom[nmax];

struct T {
    int cc, cd, dc, dd;
};

T aint[nmax * 4];

T combine(T x, T y) {
    T ans = {inf, inf, inf, inf};
    ans.cc = min({x.cc + y.cc, x.cc + y.dc + 1, x.cd + y.dc, x.cd + y.cc + 1});
    ans.cd = min({x.cc + y.cd, x.cc + y.dd + 1, x.cd + y.dd, x.cd + y.cd + 1});
    ans.dd = min({x.dd + y.dd, x.dd + y.cd + 1, x.dc + y.cd, x.dc + y.dd + 1});
    ans.dc = min({x.dd + y.dc, x.dd + y.cc + 1, x.dc + y.cc, x.dc + y.dc + 1});
    return ans;
}


void build(int node, int left, int right) {
    if (left == right) {
        aint[node].cc = aint[node].dd = 0;
        aint[node].cd = aint[node].dc = inf;
        return;
    }
    int mid = (left + right) / 2;
    build(node * 2, left, mid);
    build(node * 2 + 1, mid + 1, right);
//    aint[node] = combine(aint[node * 2], aint[node * 2 + 1]);
    aint[node].cc = aint[node].dd = 0;
    aint[node].cd = aint[node].dc = 0;
}

void update(int node, int left, int right, int x, pair<int, int> y) {
    if (left == right) {
        aint[node].cc = y.first;
        aint[node].dd = y.second;
        return;
    }
    int mid = (left + right) / 2;
    if (x <= mid) update(node * 2, left, mid, x, y);
    else update(node * 2 + 1, mid + 1, right, x, y);
    aint[node] = combine(aint[node * 2], aint[node * 2 + 1]);
}

void update(int x, pair<int, int> y) {
    update(1, 1, n, x, y);
}

T query(int node, int left, int right, int x, int y) {
    if (x <= left && right <= y) {
        return aint[node];
    }
    int mid = (left + right) / 2;
    if (x <= mid && y > mid) {
        return combine(query(node * 2, left, mid, x, y), query(node * 2 + 1, mid + 1, right, x, y));
    }
    if (x <= mid) {
        return query(node * 2, left, mid, x, y);
    }
    if (y > mid) {
        return query(node * 2 + 1, mid + 1, right, x, y);
    }
}

T query(int x, int y) {
    return query(1, 1, n, x, y);
}

void dfs1(int x, int par = 0) {
    sz[x] = 1;
    parent[x] = par;
    depth[x] = depth[par] + 1;
    int mx = 0;
    for (auto y: g[x]) {
        if (y == par) continue;
        dfs1(y, x);
        sz[x] += sz[y];
        if (sz[y] > mx) {
            heavy[x] = y;
            mx = sz[y];
        }
    }
}

void decompose(int x, int crttop) {
    path[crttop].push_back(x);
    top[x] = crttop;
    pos[x] = ++crtpos;
    if (heavy[x]) {
        decompose(heavy[x], crttop);
    }
    for (auto y: g[x]) {
        if (y == parent[x]) continue;
        if (heavy[x] != y) {
            decompose(y, y);
        }
    }
}

pair<int, int> getval(int x) {
    pair<int, int> ans; // first - cc ; second - dd
    for (auto y: g[x]) {
        if (y == parent[x] || y == heavy[x]) continue;
        T crt = query(pos[top[y]], pos[bottom[y]]);
        ans.first += min({crt.cc, crt.cd, crt.dc + 1, crt.dd + 1});
        ans.second += min({crt.cc + 1, crt.cd + 1, crt.dc, crt.dd});
    }
    T tmp = query(pos[x], pos[x]);
    if (tmp.cc == inf) ans.first = inf;
    if (tmp.dd == inf) ans.second = inf;
    return ans;
}

void dfs(int x) {
    for (auto y: g[x]) {
        if (y == parent[x]) continue;
        dfs(y);
    }
    pair<int, int> ans = getval(x);
    update(pos[x], ans);
}

void initialize(int N, std::vector<int> A, std::vector<int> B) {
    n = N; m = A.size();
    for (int i = 0; i < m; i++) {
        g[A[i]].push_back(B[i]);
        g[B[i]].push_back(A[i]);
    }
    dfs1(1);
    decompose(1, 1);
    build(1, 1, n);

    for (int i = 1; i <= n; i++) {
        for (auto x: path[i]) {
            bottom[x] = path[i].back();
        }
    }
    dfs(1);
}

int cat(int x) {
    pair<int, int> crt = getval(x);
    update(pos[x], {crt.first, inf});
    x = parent[top[x]];
    while (x) {
        auto tmp = getval(x);
        update(pos[x], getval(x));
        x = parent[top[x]];
    }
    T ans = query(pos[top[1]], pos[bottom[1]]);
    return min({ans.cc, ans.cd, ans.dc, ans.dd});
}

int dog(int x) {
    pair<int, int> crt = getval(x);
    update(pos[x], {inf, crt.second});
    x = parent[top[x]];
    while (x) {
        update(pos[x], getval(x));
        x = parent[top[x]];
    }
    T ans = query(pos[top[1]], pos[bottom[1]]);
    return min({ans.cc, ans.cd, ans.dc, ans.dd});
}

int neighbor(int x) {
    update(pos[x], {0, 0});
    pair<int, int> crt = getval(x);
    update(pos[x], crt);
    x = parent[top[x]];
    while (x) {
        update(pos[x], getval(x));
        x = parent[top[x]];
    }
    T ans = query(pos[top[1]], pos[bottom[1]]);
    return min({ans.cc, ans.cd, ans.dc, ans.dd});
}

Compilation message

catdog.cpp: In function 'int cat(int)':
catdog.cpp:154:14: warning: variable 'tmp' set but not used [-Wunused-but-set-variable]
  154 |         auto tmp = getval(x);
      |              ^~~
catdog.cpp: In function 'T query(int, int, int, int, int)':
catdog.cpp:71:1: warning: control reaches end of non-void function [-Wreturn-type]
   71 | }
      | ^
# Verdict Execution time Memory Grader output
1 Correct 2 ms 9820 KB Output is correct
2 Correct 2 ms 9820 KB Output is correct
3 Correct 2 ms 9852 KB Output is correct
4 Correct 2 ms 9820 KB Output is correct
5 Correct 2 ms 9820 KB Output is correct
6 Correct 2 ms 9816 KB Output is correct
7 Correct 2 ms 9820 KB Output is correct
8 Correct 5 ms 9816 KB Output is correct
9 Correct 2 ms 9820 KB Output is correct
10 Correct 2 ms 9820 KB Output is correct
11 Correct 2 ms 9820 KB Output is correct
12 Correct 2 ms 9820 KB Output is correct
13 Correct 2 ms 9820 KB Output is correct
14 Correct 2 ms 9816 KB Output is correct
15 Correct 2 ms 10072 KB Output is correct
16 Correct 2 ms 9816 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 9820 KB Output is correct
2 Correct 2 ms 9820 KB Output is correct
3 Correct 2 ms 9852 KB Output is correct
4 Correct 2 ms 9820 KB Output is correct
5 Correct 2 ms 9820 KB Output is correct
6 Correct 2 ms 9816 KB Output is correct
7 Correct 2 ms 9820 KB Output is correct
8 Correct 5 ms 9816 KB Output is correct
9 Correct 2 ms 9820 KB Output is correct
10 Correct 2 ms 9820 KB Output is correct
11 Correct 2 ms 9820 KB Output is correct
12 Correct 2 ms 9820 KB Output is correct
13 Correct 2 ms 9820 KB Output is correct
14 Correct 2 ms 9816 KB Output is correct
15 Correct 2 ms 10072 KB Output is correct
16 Correct 2 ms 9816 KB Output is correct
17 Correct 3 ms 9820 KB Output is correct
18 Correct 3 ms 9820 KB Output is correct
19 Correct 3 ms 9816 KB Output is correct
20 Correct 3 ms 9820 KB Output is correct
21 Correct 3 ms 9820 KB Output is correct
22 Correct 3 ms 9820 KB Output is correct
23 Correct 4 ms 9872 KB Output is correct
24 Correct 4 ms 9820 KB Output is correct
25 Correct 3 ms 9820 KB Output is correct
26 Correct 3 ms 9912 KB Output is correct
27 Correct 2 ms 9820 KB Output is correct
28 Correct 3 ms 9820 KB Output is correct
29 Correct 3 ms 9820 KB Output is correct
30 Correct 5 ms 9820 KB Output is correct
31 Correct 7 ms 9820 KB Output is correct
32 Correct 8 ms 9828 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 9820 KB Output is correct
2 Correct 2 ms 9820 KB Output is correct
3 Correct 2 ms 9852 KB Output is correct
4 Correct 2 ms 9820 KB Output is correct
5 Correct 2 ms 9820 KB Output is correct
6 Correct 2 ms 9816 KB Output is correct
7 Correct 2 ms 9820 KB Output is correct
8 Correct 5 ms 9816 KB Output is correct
9 Correct 2 ms 9820 KB Output is correct
10 Correct 2 ms 9820 KB Output is correct
11 Correct 2 ms 9820 KB Output is correct
12 Correct 2 ms 9820 KB Output is correct
13 Correct 2 ms 9820 KB Output is correct
14 Correct 2 ms 9816 KB Output is correct
15 Correct 2 ms 10072 KB Output is correct
16 Correct 2 ms 9816 KB Output is correct
17 Correct 3 ms 9820 KB Output is correct
18 Correct 3 ms 9820 KB Output is correct
19 Correct 3 ms 9816 KB Output is correct
20 Correct 3 ms 9820 KB Output is correct
21 Correct 3 ms 9820 KB Output is correct
22 Correct 3 ms 9820 KB Output is correct
23 Correct 4 ms 9872 KB Output is correct
24 Correct 4 ms 9820 KB Output is correct
25 Correct 3 ms 9820 KB Output is correct
26 Correct 3 ms 9912 KB Output is correct
27 Correct 2 ms 9820 KB Output is correct
28 Correct 3 ms 9820 KB Output is correct
29 Correct 3 ms 9820 KB Output is correct
30 Correct 5 ms 9820 KB Output is correct
31 Correct 7 ms 9820 KB Output is correct
32 Correct 8 ms 9828 KB Output is correct
33 Correct 279 ms 17272 KB Output is correct
34 Correct 105 ms 16984 KB Output is correct
35 Correct 251 ms 16088 KB Output is correct
36 Correct 447 ms 22436 KB Output is correct
37 Correct 23 ms 14168 KB Output is correct
38 Correct 485 ms 23144 KB Output is correct
39 Correct 457 ms 23152 KB Output is correct
40 Correct 453 ms 23104 KB Output is correct
41 Correct 471 ms 23360 KB Output is correct
42 Correct 440 ms 23156 KB Output is correct
43 Correct 471 ms 23240 KB Output is correct
44 Correct 424 ms 23148 KB Output is correct
45 Correct 442 ms 23104 KB Output is correct
46 Correct 463 ms 23364 KB Output is correct
47 Correct 456 ms 23104 KB Output is correct
48 Execution timed out 3020 ms 21868 KB Time limit exceeded
49 Halted 0 ms 0 KB -