Submission #954124

# Submission time Handle Problem Language Result Execution time Memory
954124 2024-03-27T10:21:54 Z gaga999 Sandcastle 2 (JOI22_ho_t5) C++17
100 / 100
439 ms 21840 KB
#include <cstdio>
#include <stdio.h>
#include <iostream>
#include <math.h>
#include <vector>
#include <queue>
#include <stack>
#include <deque>
#include <algorithm>
#include <utility>
#include <set>
#include <map>
#include <stdlib.h>
#include <cstring>
#include <string.h>
#include <string>
#include <sstream>
#include <assert.h>
#include <climits>
#include <sstream>
#include <numeric>
#include <time.h>
#include <limits.h>
#include <list>
#include <bitset>
#include <unordered_map>
#include <unordered_set>
#include <random>
#include <iomanip>
#include <complex>
#include <chrono>
#include <fstream>
#include <functional>
#include <unistd.h>
// #pragma GCC optimize("Ofast,no-stack-protector")
// #pragma GCC optimize("O3,unroll-loops")
// #pragma GCC target("avx,avx2,bmi,bmi2,lzcnt,popcnt")
#define lowbit(x) ((x) & -(x))
#define ml(a, b) ((1ll * (a) * (b)) % M)
#define tml(a, b) (a) = ((1ll * (a) * (b)) % M)
#define ad(a, b) ((0ll + (a) + (b)) % M)
#define tad(a, b) (a) = ((0ll + (a) + (b)) % M)
#define mi(a, b) ((0ll + M + (a) - (b)) % M)
#define tmi(a, b) (a) = ((0ll + M + (a) - (b)) % M)
#define tmin(a, b) (a) = min((a), (b))
#define tmax(a, b) (a) = max((a), (b))
#define iter(a) (a).begin(), (a).end()
#define riter(a) (a).rbegin(), (a).rend()
#define init(a, b) memset((a), (b), sizeof(a))
#define cpy(a, b) memcpy((a), (b), sizeof(a))
#define uni(a) a.resize(unique(iter(a)) - a.begin())
#define pb emplace_back
#define mpr make_pair
#define ls(i) ((i) << 1)
#define rs(i) ((i) << 1 | 1)
#define INF 0x3f3f3f3f
#define NIF 0xc0c0c0c0
#define eps 1e-9
#define F first
#define S second
#define AC cin.tie(0)->sync_with_stdio(0)
using namespace std;
typedef long long llt;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef pair<llt, llt> pll;
typedef complex<double> cd;
// const int M = 998244353;
 
// random_device rm;
// mt19937 rg(rm());
// default_random_engine rg(rm());
// uniform_int_distribution<int> rd(INT_MIN, INT_MAX);
// uniform_real_distribution<double> rd(0, M_PI);
 
void db() { cerr << "\n"; }
template <class T, class... U>
void db(T a, U... b) { cerr << a << " ", db(b...); }
 
inline char gc()
{
    const static int SZ = 1 << 16;
    static char buf[SZ], *p1, *p2;
    if (p1 == p2 && (p2 = buf + fread(p1 = buf, 1, SZ, stdin), p1 == p2))
        return -1;
    return *p1++;
}
void rd() {}
template <typename T, typename... U>
void rd(T &x, U &...y)
{
    x = 0;
    bool f = 0;
    char c = gc();
    while (!isdigit(c))
        f ^= !(c ^ 45), c = gc();
    while (isdigit(c))
        x = (x << 1) + (x << 3) + (c ^ 48), c = gc();
    f && (x = -x), rd(y...);
}
 
template <typename T>
void prt(T x)
{
    if (x < 0)
        putchar('-'), x = -x;
    if (x > 9)
        prt(x / 10);
    putchar((x % 10) ^ 48);
}
 
vector<vector<int>> gd, v[3][3][3][3], v1[3][3], v2[3][3], vr;
#define p1 [x - 1][y]
#define p2 [x][y - 1]
#define p3 [x][y + 1]
#define p4 [x + 1][y]
#define c1 x != l
#define c2 y != u
#define c3 y != d
#define c4 x != r
int gv(int x, int y, int l, int r, int u, int d)
{
    int mn = INF, cr = gd[x][y], res = 0;
    if (c1 && gd p1 > cr && gd p1 < mn)
        mn = gd p1, res = 1;
    if (c2 && gd p2 > cr && gd p2 < mn)
        mn = gd p2, res = 2;
    if (c3 && gd p3 > cr && gd p3 < mn)
        mn = gd p3, res = 3;
    if (c4 && gd p4 > cr && gd p4 < mn)
        mn = gd p4, res = 4;
    return res;
}
#define pp l, r, u, d
int slv(int x, int y, int l, int r, int u, int d)
{
    if (c1 && gv(x - 1, y, pp) == 4)
        return 0;
    if (c2 && gv(x, y - 1, pp) == 3)
        return 0;
    if (c3 && gv(x, y + 1, pp) == 2)
        return 0;
    if (c4 && gv(x + 1, y, pp) == 1)
        return 0;
    return 1;
}
#define vt(i, j) vector<vector<int>>(i, vector<int>(j))
int cnt[50004];
signed main()
{
    int n, m;
    rd(n, m);
    if (n > m)
    {
        swap(n, m);
        gd = vt(n, m);
        for (int i = 0; i < m; i++)
            for (int j = 0; j < n; j++)
                rd(gd[j][i]);
    }
    else
    {
        gd = vt(n, m);
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                rd(gd[i][j]);
    }
    for (int l = 0; l < 3; l++)
    {
        for (int r = 0; r < 3; r++)
        {
            for (int u = 0; u < 3; u++)
            {
                for (int d = 0; d < 3; d++)
                {
                    v[l][r][u][d] = vt(n, m);
                    for (int i = 0; i < n; i++)
                        for (int j = 0; j < m; j++)
                            v[l][r][u][d][i][j] =
                                slv(i, j, max(0, i - l), min(n - 1, i + r), max(0, j - u), min(m - 1, j + d));
                }
            }
        }
    }
    for (int l = 0; l < 3; l++)
    {
        for (int r = 0; r < 3; r++)
        {
            v1[l][r] = v2[l][r] = vt(n, m);
            for (int i = 0; i < n; i++)
            {
                v1[l][r][i][0] = v[l][r][2][2][i][0];
                for (int j = 1; j < m; j++)
                    v1[l][r][i][j] = v[l][r][2][2][i][j] + v1[l][r][i][j - 1];
            }
            for (int j = 0; j < m; j++)
            {
                v2[l][r][0][j] = v[2][2][l][r][0][j];
                for (int i = 1; i < n; i++)
                    v2[l][r][i][j] = v[2][2][l][r][i][j] + v2[l][r][i - 1][j];
            }
        }
    }
    vr = vt(n, m);
    for (int i = 0; i < m; i++)
        vr[0][i] = v[2][2][2][2][0][i];
    for (int i = 1; i < n; i++)
    {
        vr[i][0] = v[2][2][2][2][0][i];
        for (int j = 1; j < m; j++)
        {
            vr[i][j] = vr[i - 1][j] + vr[i][j - 1] -
                       vr[i - 1][j - 1] + v[2][2][2][2][i][j];
        }
    }
    llt ans = 0;
    for (int l = 0; l < n; l++)
    {
        for (int r = l; r < n; r++)
        {
            if (r - l < 4)
            {
                for (int i = 3; i < m; i++)
                {
                    int tp = 1;
                    for (int a = l; a <= r; a++)
                    {
                        int x = min(2, a - l), y = min(2, r - a);
                        tp += v1[x][y][a][i - 2] - v[x][y][0][2][a][i - 3] - v[x][y][1][2][a][i - 2];
                    }
                    if (tp >= 0)
                        cnt[tp]++;
                    tp = 0;
                    for (int a = l; a <= r; a++)
                    {
                        int x = min(2, a - l), y = min(2, r - a);
                        tp += v1[x][y][a][i - 2] + v[x][y][2][1][a][i - 1] + v[x][y][2][0][a][i];
                    }
                    ans += cnt[tp];
                }
                for (int i = 0; i < m; i++)
                {
                    for (int j = i; j < min(i + 3, m); j++)
                    {
                        int tp = 0;
                        for (int a = l; a <= r; a++)
                            for (int b = i; b <= j; b++)
                                tp += v[min(2, a - l)][min(2, r - a)][min(2, b - i)][min(2, j - b)][a][b];
                        if (tp == 1)
                            ans++;
                    }
                }
            }
            else
            {
                for (int i = 0; i < m; i++)
                {
                    for (int j = i; j < min(i + 3, m); j++)
                    {
                        int tp = 0;
                        for (int b = i; b <= j; b++)
                        {
                            int x = min(b - i, 2), y = min(j - b, 2);
                            tp += v[0][2][x][y][l][b];
                            tp += v[1][2][x][y][l + 1][b];
                            tp += v[2][0][x][y][r][b];
                            tp += v[2][1][x][y][r - 1][b];
                            tp += v2[x][y][r - 2][b] - v2[x][y][l + 1][b];
                        }
                        if (tp == 1)
                            ans++;
                    }
                }
                for (int i = 3; i < m; i++)
                {
                    int tp = 1;
                    tp += v1[0][2][l][i - 2] - v[0][2][0][2][l][i - 3] - v[0][2][1][2][l][i - 2];
                    tp += v1[1][2][l + 1][i - 2] - v[1][2][0][2][l + 1][i - 3] - v[1][2][1][2][l + 1][i - 2];
                    tp += v1[2][0][r][i - 2] - v[2][0][0][2][r][i - 3] - v[2][0][1][2][r][i - 2];
                    tp += v1[2][1][r - 1][i - 2] - v[2][1][0][2][r - 1][i - 3] - v[2][1][1][2][r - 1][i - 2];
                    tp += vr[r - 2][i - 2] - vr[l + 1][i - 2] -
                          v2[0][2][r - 2][i - 3] + v2[0][2][l + 1][i - 3] -
                          v2[1][2][r - 2][i - 2] + v2[1][2][l + 1][i - 2];
                    if (tp >= 0)
                        cnt[tp]++;
                    tp = 0;
                    tp += v1[0][2][l][i - 2] + v[0][2][2][0][l][i] + v[0][2][2][1][l][i - 1];
                    tp += v1[1][2][l + 1][i - 2] + v[1][2][2][0][l + 1][i] + v[1][2][2][1][l + 1][i - 1];
                    tp += v1[2][0][r][i - 2] + v[2][0][2][0][r][i] + v[2][0][2][1][r][i - 1];
                    tp += v1[2][1][r - 1][i - 2] + v[2][1][2][0][r - 1][i] + v[2][1][2][1][r - 1][i - 1];
                    tp += vr[r - 2][i - 2] - vr[l + 1][i - 2] +
                          v2[2][0][r - 2][i] - v2[2][0][l + 1][i] +
                          v2[2][1][r - 2][i - 1] - v2[2][1][l + 1][i - 1];
                    ans += cnt[tp];
                }
            }
            memset(cnt, 0, (r - l + 1) * m * 4);
        }
    }
    prt(ans), putchar('\n');
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 45 ms 20940 KB Output is correct
3 Correct 47 ms 20608 KB Output is correct
4 Correct 44 ms 20880 KB Output is correct
5 Correct 41 ms 20852 KB Output is correct
6 Correct 59 ms 20864 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 444 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 448 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 444 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 448 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 860 KB Output is correct
9 Correct 6 ms 1112 KB Output is correct
10 Correct 3 ms 1372 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 2 ms 860 KB Output is correct
13 Correct 4 ms 1116 KB Output is correct
14 Correct 3 ms 860 KB Output is correct
15 Correct 5 ms 1020 KB Output is correct
16 Correct 6 ms 1112 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 444 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 448 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 860 KB Output is correct
9 Correct 6 ms 1112 KB Output is correct
10 Correct 3 ms 1372 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 2 ms 860 KB Output is correct
13 Correct 4 ms 1116 KB Output is correct
14 Correct 3 ms 860 KB Output is correct
15 Correct 5 ms 1020 KB Output is correct
16 Correct 6 ms 1112 KB Output is correct
17 Correct 6 ms 3164 KB Output is correct
18 Correct 28 ms 3532 KB Output is correct
19 Correct 20 ms 3164 KB Output is correct
20 Correct 21 ms 3648 KB Output is correct
21 Correct 20 ms 3420 KB Output is correct
22 Correct 22 ms 3508 KB Output is correct
23 Correct 22 ms 3420 KB Output is correct
24 Correct 19 ms 3164 KB Output is correct
25 Correct 27 ms 3420 KB Output is correct
26 Correct 27 ms 3416 KB Output is correct
27 Correct 30 ms 3420 KB Output is correct
28 Correct 28 ms 3476 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 444 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 448 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 860 KB Output is correct
9 Correct 6 ms 1112 KB Output is correct
10 Correct 3 ms 1372 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 2 ms 860 KB Output is correct
13 Correct 4 ms 1116 KB Output is correct
14 Correct 3 ms 860 KB Output is correct
15 Correct 5 ms 1020 KB Output is correct
16 Correct 6 ms 1112 KB Output is correct
17 Correct 6 ms 3164 KB Output is correct
18 Correct 28 ms 3532 KB Output is correct
19 Correct 20 ms 3164 KB Output is correct
20 Correct 21 ms 3648 KB Output is correct
21 Correct 20 ms 3420 KB Output is correct
22 Correct 22 ms 3508 KB Output is correct
23 Correct 22 ms 3420 KB Output is correct
24 Correct 19 ms 3164 KB Output is correct
25 Correct 27 ms 3420 KB Output is correct
26 Correct 27 ms 3416 KB Output is correct
27 Correct 30 ms 3420 KB Output is correct
28 Correct 28 ms 3476 KB Output is correct
29 Correct 43 ms 20884 KB Output is correct
30 Correct 187 ms 20816 KB Output is correct
31 Correct 439 ms 21492 KB Output is correct
32 Correct 52 ms 20816 KB Output is correct
33 Correct 339 ms 21840 KB Output is correct
34 Correct 324 ms 21584 KB Output is correct
35 Correct 156 ms 14160 KB Output is correct
36 Correct 220 ms 20956 KB Output is correct
37 Correct 354 ms 21252 KB Output is correct
38 Correct 374 ms 21252 KB Output is correct
39 Correct 350 ms 21288 KB Output is correct
40 Correct 361 ms 21324 KB Output is correct
41 Correct 361 ms 21328 KB Output is correct
42 Correct 388 ms 21328 KB Output is correct
43 Correct 370 ms 21588 KB Output is correct
44 Correct 376 ms 21332 KB Output is correct