Submission #952832

# Submission time Handle Problem Language Result Execution time Memory
952832 2024-03-25T01:54:49 Z gaga999 Mountains and Valleys (CCO20_day1problem3) C++17
3 / 25
51 ms 93072 KB
// #pragma GCC optimize("Ofast,no-stack-protector")
// #pragma GCC optimize("O3,unroll-loops")
// #pragma GCC target("avx,avx2,bmi,bmi2,lzcnt,popcnt")
#include <bits/stdc++.h>
#define lowbit(x) ((x) & -(x))
#define ml(a, b) ((1ll * (a) * (b)) % M)
#define tml(a, b) (a) = ((1ll * (a) * (b)) % M)
#define ad(a, b) ((0ll + (a) + (b)) % M)
#define tad(a, b) (a) = ((0ll + (a) + (b)) % M)
#define mi(a, b) ((0ll + M + (a) - (b)) % M)
#define tmi(a, b) (a) = ((0ll + M + (a) - (b)) % M)
#define tmin(a, b) (a) = min((a), (b))
#define tmax(a, b) (a) = max((a), (b))
#define iter(a) (a).begin(), (a).end()
#define riter(a) (a).rbegin(), (a).rend()
#define init(a, b) memset((a), (b), sizeof(a))
#define cpy(a, b) memcpy((a), (b), sizeof(a))
#define uni(a) a.resize(unique(iter(a)) - a.begin())
#define size(x) (int)x.size()
#define pb emplace_back
#define mpr make_pair
#define ls(i) ((i) << 1)
#define rs(i) ((i) << 1 | 1)
#define INF 0x3f3f3f3f
#define NIF 0xc0c0c0c0
#define eps 1e-9
#define F first
#define S second
#define int long long
#define AC cin.tie(0)->sync_with_stdio(0)
using namespace std;
typedef long long llt;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef pair<llt, llt> pll;
typedef complex<double> cd;
// const int M = 998244353;

// random_device rm;
// mt19937 rg(rm());
// default_random_engine rg(rm());
// uniform_int_distribution<int> rd(INT_MIN, INT_MAX);
// uniform_real_distribution<double> rd(0, M_PI);

void db() { cerr << "\n"; }
template <class T, class... U>
void db(T a, U... b) { cerr << a << " ", db(b...); }

inline char gc()
{
    const static int SZ = 1 << 16;
    static char buf[SZ], *p1, *p2;
    if (p1 == p2 && (p2 = buf + fread(p1 = buf, 1, SZ, stdin), p1 == p2))
        return -1;
    return *p1++;
}
void rd() {}
template <typename T, typename... U>
void rd(T &x, U &...y)
{
    x = 0;
    bool f = 0;
    char c = gc();
    while (!isdigit(c))
        f ^= !(c ^ 45), c = gc();
    while (isdigit(c))
        x = (x << 1) + (x << 3) + (c ^ 48), c = gc();
    f && (x = -x), rd(y...);
}

template <typename T>
void prt(T x)
{
    if (x < 0)
        putchar('-'), x = -x;
    if (x > 9)
        prt(x / 10);
    putchar((x % 10) ^ 48);
}

const int N = 5e5 + 5, M = 2e6 + 6;
vector<int> eg[N];
int xr[M], yr[M], wr[M], a1[M];
int in[N], ou[N], ct, ac[20][N];
int mx[N], sc[N], th[N], dp[N], ans;
vector<int> q1[N], q2[N];

void dfs(int u, int fa)
{
    in[u] = ++ct;
    for (int v : eg[u])
    {
        if (v == fa)
            continue;
        ac[0][v] = u, dp[v] = dp[u] + 1;
        for (int i = 1; i < 20; i++)
            ac[i][v] = ac[i - 1][ac[i - 1][v]];
        dfs(v, u);
        tmax(th[u], mx[v] + 1);
        if (th[u] > sc[u])
            swap(th[u], sc[u]);
        if (sc[u] > mx[u])
            swap(mx[u], sc[u]);
    }
    tmax(ans, mx[u] + sc[u]), ou[u] = ct;
}

inline bool isa(int a, int p)
{
    return in[a] <= in[p] && ou[p] <= ou[a];
}

inline int lca(int u, int v)
{
    if (isa(u, v))
        return u;
    for (int i = 19; i >= 0; i--)
        if (ac[i][u] && !isa(ac[i][u], v))
            u = ac[i][u];
    return ac[0][u];
}

inline int jp(int a, int u)
{
    for (int i = 19; i >= 0; i--)
        if (ac[i][u] && !isa(ac[i][u], a))
            u = ac[i][u];
    return u;
}

struct P
{
    int vp, vn, ans;
    P() { vp = vn = ans = -INF; }
    inline void ini() { vp = vn = ans = -INF; }
    P operator+(const P &rh)
    {
        P res;
        res.ans = max({ans, vp + rh.vn, rh.ans});
        res.vp = max(vp, rh.vp);
        res.vn = max(vn, rh.vn);
        return res;
    }
} tr[N << 2], vv;

void cg(int l, int r, int id, int p, int v)
{
    if (l == r)
    {
        tr[id].vp = v + p;
        tr[id].vn = v - p;
        tr[id].ans = -INF;
        return;
    }
    int m = (l + r) >> 1;
    if (p <= m)
        cg(l, m, ls(id), p, v);
    else
        cg(m + 1, r, rs(id), p, v);
    tr[id] = tr[ls(id)] + tr[rs(id)];
}

void qy(int l, int r, int id, int ql, int qr)
{
    if (ql <= l && r <= qr)
    {
        vv = vv + tr[id];
        return;
    }
    int m = (l + r) >> 1;
    if (ql <= m)
        qy(l, m, ls(id), ql, qr);
    if (qr > m)
        qy(m + 1, r, rs(id), ql, qr);
}

void slv(int u, int fa)
{
    for (int v : eg[u])
    {
        if (v == fa)
            continue;
        cg(1, ct, 1, dp[u], mx[v] + 1 == mx[u] ? sc[u] : mx[u]);
        slv(v, u);
    }
    cg(1, ct, 1, dp[u], mx[u]);
    for (int i : q1[u])
    {
        vv.ini(), qy(1, ct, 1, dp[xr[i]], dp[u]);
        tmin(ans, wr[i] - (vv.ans + dp[u] - dp[xr[i]]));
        vv.ini(), qy(1, ct, 1, dp[xr[i]] + 1, dp[u]);
        int tp = vv.vn + dp[u] + dp[xr[i]];
        vv.ini(), qy(1, ct, 1, 1, dp[xr[i]]);
        tmin(ans, wr[i] - (tp + vv.vn));
    }
    for (int i : q2[u])
    {
        int p = lca(xr[i], yr[i]);
        // vv.ini(), qy(1, ct, 1, dp[p], dp[u]);
        // db(dp[p], p, u, xr[i], yr[i], ans);
        vv.ini(), qy(1, ct, 1, dp[p] + 1, dp[u]);
        tmin(ans, wr[i] - (vv.ans + dp[xr[i]] + dp[yr[i]] - (dp[p] << 1)));
        if (xr[i] == u)
            a1[i] = vv.vn;
        else
            tmin(ans, wr[i] - (vv.vn + a1[i] + dp[xr[i]] + dp[yr[i]]));
        int tp = dp[xr[i]] + dp[yr[i]] + vv.vn;
        int v1 = mx[jp(p, xr[i])] + 1, v2 = mx[jp(p, yr[i])] + 1;
        if (v1 < v2)
            swap(v1, v2);
        if (v1 != mx[p])
            tmin(ans, wr[i] - (tp - dp[p] + mx[p]));
        else if (v2 != sc[p])
            tmin(ans, wr[i] - (tp - dp[p] + sc[p]));
        else
            tmin(ans, wr[i] - (tp - dp[p] + th[p]));
        if (ac[0][p])
        {
            vv.ini(), qy(1, ct, 1, 1, dp[p] - 1);
            tmin(ans, wr[i] - (tp + vv.vn));
        }
    }
}

signed main()
{
    int n, m;
    rd(n, m);
    // assert(n == 6);
    for (int i = 0; i < m; i++)
    {
        rd(xr[i], yr[i], wr[i]), xr[i]++, yr[i]++;
        if (wr[i] == 1)
            eg[xr[i]].pb(yr[i]), eg[yr[i]].pb(xr[i]);
    }
    int rt = 1;
    dp[rt] = 1, dfs(rt, -1), ans = ((n - 1) << 1) - ans;
    int pans = ans;
    for (int i = 0; i < m; i++)
    {
        assert(xr[i] != yr[i]);
        if (wr[i] == 1)
            continue;
        wr[i] += (n - 2) << 1;
        if (in[xr[i]] > in[yr[i]])
            swap(xr[i], yr[i]);
        if (isa(xr[i], yr[i]))
            q1[yr[i]].pb(i);
        else
            q2[xr[i]].pb(i), q2[yr[i]].pb(i);
    }
    slv(rt, -1);
    assert(ans <= pans);
    prt(ans), putchar('\n');
}
# Verdict Execution time Memory Grader output
1 Correct 41 ms 89180 KB Output is correct
2 Correct 18 ms 89180 KB Output is correct
3 Correct 18 ms 89180 KB Output is correct
4 Correct 16 ms 89180 KB Output is correct
5 Correct 17 ms 91228 KB Output is correct
6 Correct 23 ms 89228 KB Output is correct
7 Correct 19 ms 89180 KB Output is correct
8 Correct 19 ms 89180 KB Output is correct
9 Correct 41 ms 89172 KB Output is correct
10 Correct 18 ms 89180 KB Output is correct
11 Correct 22 ms 91224 KB Output is correct
12 Correct 17 ms 89180 KB Output is correct
13 Correct 17 ms 89180 KB Output is correct
14 Correct 17 ms 91228 KB Output is correct
15 Correct 41 ms 89168 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 89180 KB Output is correct
2 Correct 18 ms 89180 KB Output is correct
3 Correct 18 ms 89180 KB Output is correct
4 Correct 16 ms 89180 KB Output is correct
5 Correct 17 ms 91228 KB Output is correct
6 Correct 23 ms 89228 KB Output is correct
7 Correct 19 ms 89180 KB Output is correct
8 Correct 19 ms 89180 KB Output is correct
9 Correct 41 ms 89172 KB Output is correct
10 Correct 18 ms 89180 KB Output is correct
11 Correct 22 ms 91224 KB Output is correct
12 Correct 17 ms 89180 KB Output is correct
13 Correct 17 ms 89180 KB Output is correct
14 Correct 17 ms 91228 KB Output is correct
15 Correct 41 ms 89168 KB Output is correct
16 Correct 19 ms 89180 KB Output is correct
17 Correct 16 ms 89220 KB Output is correct
18 Incorrect 16 ms 89180 KB Output isn't correct
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 30 ms 90968 KB Output is correct
2 Correct 24 ms 93020 KB Output is correct
3 Correct 51 ms 92784 KB Output is correct
4 Correct 26 ms 90712 KB Output is correct
5 Correct 28 ms 90712 KB Output is correct
6 Correct 22 ms 90460 KB Output is correct
7 Correct 23 ms 93072 KB Output is correct
8 Correct 25 ms 90968 KB Output is correct
9 Correct 25 ms 93016 KB Output is correct
10 Correct 24 ms 90804 KB Output is correct
11 Correct 24 ms 90972 KB Output is correct
12 Correct 23 ms 90716 KB Output is correct
13 Correct 25 ms 93016 KB Output is correct
14 Correct 26 ms 89180 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 89180 KB Output is correct
2 Correct 18 ms 89180 KB Output is correct
3 Correct 18 ms 89180 KB Output is correct
4 Correct 16 ms 89180 KB Output is correct
5 Correct 17 ms 91228 KB Output is correct
6 Correct 23 ms 89228 KB Output is correct
7 Correct 19 ms 89180 KB Output is correct
8 Correct 19 ms 89180 KB Output is correct
9 Correct 41 ms 89172 KB Output is correct
10 Correct 18 ms 89180 KB Output is correct
11 Correct 22 ms 91224 KB Output is correct
12 Correct 17 ms 89180 KB Output is correct
13 Correct 17 ms 89180 KB Output is correct
14 Correct 17 ms 91228 KB Output is correct
15 Correct 41 ms 89168 KB Output is correct
16 Correct 19 ms 89180 KB Output is correct
17 Correct 16 ms 89220 KB Output is correct
18 Incorrect 16 ms 89180 KB Output isn't correct
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 41 ms 89180 KB Output is correct
2 Correct 18 ms 89180 KB Output is correct
3 Correct 18 ms 89180 KB Output is correct
4 Correct 16 ms 89180 KB Output is correct
5 Correct 17 ms 91228 KB Output is correct
6 Correct 23 ms 89228 KB Output is correct
7 Correct 19 ms 89180 KB Output is correct
8 Correct 19 ms 89180 KB Output is correct
9 Correct 41 ms 89172 KB Output is correct
10 Correct 18 ms 89180 KB Output is correct
11 Correct 22 ms 91224 KB Output is correct
12 Correct 17 ms 89180 KB Output is correct
13 Correct 17 ms 89180 KB Output is correct
14 Correct 17 ms 91228 KB Output is correct
15 Correct 41 ms 89168 KB Output is correct
16 Correct 19 ms 89180 KB Output is correct
17 Correct 16 ms 89220 KB Output is correct
18 Incorrect 16 ms 89180 KB Output isn't correct
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 41 ms 89180 KB Output is correct
2 Correct 18 ms 89180 KB Output is correct
3 Correct 18 ms 89180 KB Output is correct
4 Correct 16 ms 89180 KB Output is correct
5 Correct 17 ms 91228 KB Output is correct
6 Correct 23 ms 89228 KB Output is correct
7 Correct 19 ms 89180 KB Output is correct
8 Correct 19 ms 89180 KB Output is correct
9 Correct 41 ms 89172 KB Output is correct
10 Correct 18 ms 89180 KB Output is correct
11 Correct 22 ms 91224 KB Output is correct
12 Correct 17 ms 89180 KB Output is correct
13 Correct 17 ms 89180 KB Output is correct
14 Correct 17 ms 91228 KB Output is correct
15 Correct 41 ms 89168 KB Output is correct
16 Correct 19 ms 89180 KB Output is correct
17 Correct 16 ms 89220 KB Output is correct
18 Incorrect 16 ms 89180 KB Output isn't correct
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 41 ms 89180 KB Output is correct
2 Correct 18 ms 89180 KB Output is correct
3 Correct 18 ms 89180 KB Output is correct
4 Correct 16 ms 89180 KB Output is correct
5 Correct 17 ms 91228 KB Output is correct
6 Correct 23 ms 89228 KB Output is correct
7 Correct 19 ms 89180 KB Output is correct
8 Correct 19 ms 89180 KB Output is correct
9 Correct 41 ms 89172 KB Output is correct
10 Correct 18 ms 89180 KB Output is correct
11 Correct 22 ms 91224 KB Output is correct
12 Correct 17 ms 89180 KB Output is correct
13 Correct 17 ms 89180 KB Output is correct
14 Correct 17 ms 91228 KB Output is correct
15 Correct 41 ms 89168 KB Output is correct
16 Correct 19 ms 89180 KB Output is correct
17 Correct 16 ms 89220 KB Output is correct
18 Incorrect 16 ms 89180 KB Output isn't correct
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 41 ms 89180 KB Output is correct
2 Correct 18 ms 89180 KB Output is correct
3 Correct 18 ms 89180 KB Output is correct
4 Correct 16 ms 89180 KB Output is correct
5 Correct 17 ms 91228 KB Output is correct
6 Correct 23 ms 89228 KB Output is correct
7 Correct 19 ms 89180 KB Output is correct
8 Correct 19 ms 89180 KB Output is correct
9 Correct 41 ms 89172 KB Output is correct
10 Correct 18 ms 89180 KB Output is correct
11 Correct 22 ms 91224 KB Output is correct
12 Correct 17 ms 89180 KB Output is correct
13 Correct 17 ms 89180 KB Output is correct
14 Correct 17 ms 91228 KB Output is correct
15 Correct 41 ms 89168 KB Output is correct
16 Correct 19 ms 89180 KB Output is correct
17 Correct 16 ms 89220 KB Output is correct
18 Incorrect 16 ms 89180 KB Output isn't correct
19 Halted 0 ms 0 KB -