Submission #951905

# Submission time Handle Problem Language Result Execution time Memory
951905 2024-03-22T22:29:13 Z Sputnik123 Gap (APIO16_gap) C++14
100 / 100
46 ms 5920 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <functional>
#include <cstdio>
#define pb push_back
#define in insert
#define pll pair<ll,ll>
#define vpl vector<pll>
#define vll vector <ll>
#define vl vector<ll>
///#define mp make_pair
#define F first
#define S second
#define all(v) v.begin(),v.end()
#define endl "\n"
#define ll long long 
#define ull unsigned long long
using namespace std;
using namespace __gnu_pbds;
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt,fma")
const ll sz=1e5+5;
const ll inf=1e18;
const ll mod=1e9+7;
const ll P=47;
namespace number_theory {
	ll gcd(ll x, ll y) {
	  if (x == 0) return y;
	  if (y == 0) return x;
	  return gcd(y, x % y);
	}
    ll lcm(ll x,ll y)
    {
        return  (x/gcd(x,y))*y;
    }
	bool isprime(ll n) { 
	  if (n <= 1) return false; 
	  if (n <= 3) return true; 
	  
	  if (n % 2 == 0 || n % 3 == 0) return false; 
	  
	  for (ll i = 5; i * i <= n; i += 6) 
		if (n % i == 0 || n % (i+2) == 0) 
		  return false; 
	  
	  return true; 
	} 
	 
	bool prime[15000105]; 
	void sieve(int n) { 
	  for (ll i = 0; i <= n; i++) prime[i] = 1;
	  for (ll p = 2; p * p <= n; p++) { 
		if (prime[p] == true) { 
		  for (ll i = p * p; i <= n; i += p) 
			prime[i] = false; 
		} 
	  } 
	  prime[1] = prime[0] = 0;
	} 
	 
	vector<ll> primelist;
	bool __primes_generated__ = 0;
	 
	void genprimes(int n) {
	  __primes_generated__ = 1;
	  sieve(n + 1);
	  for (ll i = 2; i <= n; i++) if (prime[i]) primelist.push_back(i);
	}
	 
	vector<ll> factors(ll n) {
	  if (!__primes_generated__) {
		cerr << "False" << endl;
		exit(1);
	  }
	  vector<ll> facs;
	 
	  for (ll i = 0; primelist[i] * primelist[i] <= n && i < primelist.size(); i++) {
		if (n % primelist[i] == 0) {
		  while (n % primelist[i] == 0) {
			n /= primelist[i];
			facs.push_back(primelist[i]);
		  }
		}
	  }
	  if (n > 1) {
		facs.push_back(n);
	  }
	  sort(facs.begin(), facs.end());
	  return facs;
	}
	
	vector<ll> getdivs(ll n) {
    vector<ll> divs;
    for (ll i = 1; i * i <= n; i++) {
      if (n % i == 0) {
        divs.push_back(i);
        divs.push_back(n / i);
      }
    }
    set <ll> s;
    for(ll i: divs)
        s.in(i);
    vll res;
    for(auto i: s)
        res.pb(i);
    return res;
  }
}
namespace modop {
	ll madd(ll a, ll b) {
	  return (a + b) % mod;
	}
	ll msub(ll a, ll b) {
	  return (((a - b) % mod) + mod) % mod;
	}
	ll mmul(ll a, ll b) {
	  return ((a % mod) * (b % mod)) % mod;
	}
	ll mpow(ll base, ll exp) {
	  ll res = 1;
	  while (exp) {
		if (exp % 2 == 1){
			res = (res * base) % mod;
		}
		exp >>= 1;
		base = (base * base) % mod;
	  }
	  return res;
	}
	ll minv(ll base) {
	  return mpow(base, mod - 2);
	}
	ll mdiv(ll a, ll b) {
	  return mmul(a, minv(b));
	}
	
	const ll FACTORIAL_SIZE = 1.1e6;
	ll fact[FACTORIAL_SIZE], ifact[FACTORIAL_SIZE];
	bool __factorials_generated__ = 0;
	void gen_factorial(ll n) {
		__factorials_generated__ = 1;
		fact[0] = fact[1] = ifact[0] = ifact[1] = 1;
		
		for (ll i = 2; i <= n; i++) {
			fact[i] = (i * fact[i - 1]) % mod;
		}
		ifact[n] = minv(fact[n]);
		for (ll i = n - 1; i >= 2; i--) {
			ifact[i] = ((i + 1) * ifact[i + 1]) % mod;
		}
	}
	ll nck(ll n, ll k) {
		if (!__factorials_generated__) {
			cerr << "Call gen_factorial you dope" << endl;
			exit(1);
		}
		if (k < 0 || n < k) return 0;
		ll den = (ifact[k] * ifact[n - k]) % mod;
		return (den * fact[n]) % mod;
	}
}

using namespace modop;
using namespace number_theory;
#include "gap.h"
ll j=0;
ll a[100000];
ll findGap(int t,int n)
{
	if(t==1)
	{
		ll l=1,r=inf;
		ll mn,mx;
		for(ll i=0;i<(n+1)/2;i++)
		{
			MinMax(l,r,&mn,&mx);
			a[j++]=mn;
			a[j++]=mx;
			l=mn+1,r=mx-1;
		}
		sort(a,a+n);
		ll ans=0;
		for(ll i=0;i<n;i++)
		{
			ans=max(ans,a[i+1]-a[i]);
		}
		return ans;
	}
	else
	{
		ll mn, mx;
		MinMax(1,inf,&mn,&mx);
		ll s=(mx-mn+n-2)/(n-1);
		ll ans=s,x,y,l=mn,i;
		for(i=mn;i+s<mx;i+=s+1)
		{
			MinMax(i,i+s,&x,&y);
			if(x!=-1)
			{
				ans=max(ans,x-l);
				l=y;
			}
		}
		MinMax(i,mx,&x,&y);
		if(x!=-1)
			ans=max(ans,x-l);
		return ans;
	}
}

Compilation message

gap.cpp: In function 'std::vector<long long int> number_theory::factors(long long int)':
gap.cpp:82:57: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   82 |    for (ll i = 0; primelist[i] * primelist[i] <= n && i < primelist.size(); i++) {
      |                                                       ~~^~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2392 KB Output is correct
2 Correct 2 ms 4440 KB Output is correct
3 Correct 1 ms 4440 KB Output is correct
4 Correct 1 ms 4440 KB Output is correct
5 Correct 2 ms 4440 KB Output is correct
6 Correct 2 ms 4480 KB Output is correct
7 Correct 2 ms 4436 KB Output is correct
8 Correct 1 ms 4440 KB Output is correct
9 Correct 1 ms 4440 KB Output is correct
10 Correct 1 ms 4440 KB Output is correct
11 Correct 1 ms 4440 KB Output is correct
12 Correct 1 ms 4440 KB Output is correct
13 Correct 1 ms 4440 KB Output is correct
14 Correct 1 ms 4440 KB Output is correct
15 Correct 1 ms 4544 KB Output is correct
16 Correct 9 ms 4628 KB Output is correct
17 Correct 8 ms 4624 KB Output is correct
18 Correct 9 ms 4628 KB Output is correct
19 Correct 8 ms 4628 KB Output is correct
20 Correct 7 ms 4616 KB Output is correct
21 Correct 34 ms 5568 KB Output is correct
22 Correct 32 ms 5680 KB Output is correct
23 Correct 33 ms 5552 KB Output is correct
24 Correct 36 ms 5920 KB Output is correct
25 Correct 29 ms 5668 KB Output is correct
26 Correct 33 ms 5668 KB Output is correct
27 Correct 32 ms 5680 KB Output is correct
28 Correct 36 ms 5676 KB Output is correct
29 Correct 32 ms 5484 KB Output is correct
30 Correct 27 ms 5668 KB Output is correct
31 Correct 3 ms 4440 KB Output is correct
32 Correct 1 ms 4440 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 4440 KB Output is correct
2 Correct 1 ms 4440 KB Output is correct
3 Correct 1 ms 4440 KB Output is correct
4 Correct 1 ms 4440 KB Output is correct
5 Correct 1 ms 4440 KB Output is correct
6 Correct 1 ms 4440 KB Output is correct
7 Correct 1 ms 4440 KB Output is correct
8 Correct 1 ms 4440 KB Output is correct
9 Correct 1 ms 4440 KB Output is correct
10 Correct 1 ms 4440 KB Output is correct
11 Correct 1 ms 4440 KB Output is correct
12 Correct 1 ms 4440 KB Output is correct
13 Correct 1 ms 4440 KB Output is correct
14 Correct 1 ms 4440 KB Output is correct
15 Correct 1 ms 4440 KB Output is correct
16 Correct 11 ms 4708 KB Output is correct
17 Correct 11 ms 4628 KB Output is correct
18 Correct 11 ms 4628 KB Output is correct
19 Correct 12 ms 4624 KB Output is correct
20 Correct 6 ms 4612 KB Output is correct
21 Correct 41 ms 4828 KB Output is correct
22 Correct 46 ms 4704 KB Output is correct
23 Correct 40 ms 4916 KB Output is correct
24 Correct 40 ms 4912 KB Output is correct
25 Correct 38 ms 5140 KB Output is correct
26 Correct 40 ms 4908 KB Output is correct
27 Correct 41 ms 4916 KB Output is correct
28 Correct 44 ms 4904 KB Output is correct
29 Correct 39 ms 4908 KB Output is correct
30 Correct 21 ms 4920 KB Output is correct
31 Correct 1 ms 4440 KB Output is correct
32 Correct 1 ms 4440 KB Output is correct