Submission #951884

# Submission time Handle Problem Language Result Execution time Memory
951884 2024-03-22T21:49:36 Z Sputnik123 Aron (COCI17_aron) C++14
0 / 50
2 ms 8540 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <functional>
#include <cstdio>
#define pb push_back
#define in insert
#define pll pair<ll,ll>
#define vpl vector<pll>
#define vll vector <ll>
#define vl vector<ll>
///#define mp make_pair
#define F first
#define S second
#define all(v) v.begin(),v.end()
#define endl "\n"
#define ll long long 
#define ull unsigned long long
using namespace std;
using namespace __gnu_pbds;
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt,fma")
const ll sz=1e5+5;
const ll inf=1e9+7;
const ll mod=1e9+7;
const ll P=47;
namespace number_theory {
	ll gcd(ll x, ll y) {
	  if (x == 0) return y;
	  if (y == 0) return x;
	  return gcd(y, x % y);
	}
    ll lcm(ll x,ll y)
    {
        return  (x/gcd(x,y))*y;
    }
	bool isprime(ll n) { 
	  if (n <= 1) return false; 
	  if (n <= 3) return true; 
	  
	  if (n % 2 == 0 || n % 3 == 0) return false; 
	  
	  for (ll i = 5; i * i <= n; i += 6) 
		if (n % i == 0 || n % (i+2) == 0) 
		  return false; 
	  
	  return true; 
	} 
	 
	bool prime[15000105]; 
	void sieve(int n) { 
	  for (ll i = 0; i <= n; i++) prime[i] = 1;
	  for (ll p = 2; p * p <= n; p++) { 
		if (prime[p] == true) { 
		  for (ll i = p * p; i <= n; i += p) 
			prime[i] = false; 
		} 
	  } 
	  prime[1] = prime[0] = 0;
	} 
	 
	vector<ll> primelist;
	bool __primes_generated__ = 0;
	 
	void genprimes(int n) {
	  __primes_generated__ = 1;
	  sieve(n + 1);
	  for (ll i = 2; i <= n; i++) if (prime[i]) primelist.push_back(i);
	}
	 
	vector<ll> factors(ll n) {
	  if (!__primes_generated__) {
		cerr << "False" << endl;
		exit(1);
	  }
	  vector<ll> facs;
	 
	  for (ll i = 0; primelist[i] * primelist[i] <= n && i < primelist.size(); i++) {
		if (n % primelist[i] == 0) {
		  while (n % primelist[i] == 0) {
			n /= primelist[i];
			facs.push_back(primelist[i]);
		  }
		}
	  }
	  if (n > 1) {
		facs.push_back(n);
	  }
	  sort(facs.begin(), facs.end());
	  return facs;
	}
	
	vector<ll> getdivs(ll n) {
    vector<ll> divs;
    for (ll i = 1; i * i <= n; i++) {
      if (n % i == 0) {
        divs.push_back(i);
        divs.push_back(n / i);
      }
    }
    set <ll> s;
    for(ll i: divs)
        s.in(i);
    vll res;
    for(auto i: s)
        res.pb(i);
    return res;
  }
}
namespace modop {
	ll madd(ll a, ll b) {
	  return (a + b) % mod;
	}
	ll msub(ll a, ll b) {
	  return (((a - b) % mod) + mod) % mod;
	}
	ll mmul(ll a, ll b) {
	  return ((a % mod) * (b % mod)) % mod;
	}
	ll mpow(ll base, ll exp) {
	  ll res = 1;
	  while (exp) {
		if (exp % 2 == 1){
			res = (res * base) % mod;
		}
		exp >>= 1;
		base = (base * base) % mod;
	  }
	  return res;
	}
	ll minv(ll base) {
	  return mpow(base, mod - 2);
	}
	ll mdiv(ll a, ll b) {
	  return mmul(a, minv(b));
	}
	
	const ll FACTORIAL_SIZE = 1.1e6;
	ll fact[FACTORIAL_SIZE], ifact[FACTORIAL_SIZE];
	bool __factorials_generated__ = 0;
	void gen_factorial(ll n) {
		__factorials_generated__ = 1;
		fact[0] = fact[1] = ifact[0] = ifact[1] = 1;
		
		for (ll i = 2; i <= n; i++) {
			fact[i] = (i * fact[i - 1]) % mod;
		}
		ifact[n] = minv(fact[n]);
		for (ll i = n - 1; i >= 2; i--) {
			ifact[i] = ((i + 1) * ifact[i + 1]) % mod;
		}
	}
	ll nck(ll n, ll k) {
		if (!__factorials_generated__) {
			cerr << "Call gen_factorial you dope" << endl;
			exit(1);
		}
		if (k < 0 || n < k) return 0;
		ll den = (ifact[k] * ifact[n - k]) % mod;
		return (den * fact[n]) % mod;
	}
}

using namespace modop;
using namespace number_theory;
vll g[sz];
ll cnt=0;
ll sub[sz];
void dfs(ll node,ll par,ll x)
{
	sub[node]=1;
	for(ll i: g[node])
	{
		if(i==par)	continue;
		dfs(i,node,x);
		sub[node]+=sub[i];
	}
	if(sub[node]>=x)
	{
		sub[node]=0;
		cnt++;
	}
}
void solve()
{
	ll n;
	cin>>n;
	ll ans=1;
	vector <char> a(n);
	for(char &i:a )
		cin>>i;
	for(ll i=1;i<n;i++)
	{
		if(a[i]!=a[i-1])	ans++;
	}
	cout<<ans+1<<endl;
}
int main()
{
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    ll t=1;
    cin>>t;
    while(t--)
    {	
        solve();
    }
}

Compilation message

aron.cpp: In function 'std::vector<long long int> number_theory::factors(long long int)':
aron.cpp:82:57: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   82 |    for (ll i = 0; primelist[i] * primelist[i] <= n && i < primelist.size(); i++) {
      |                                                       ~~^~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Incorrect 2 ms 8536 KB Output isn't correct
2 Incorrect 1 ms 8540 KB Output isn't correct
3 Incorrect 1 ms 8540 KB Output isn't correct
4 Incorrect 2 ms 8540 KB Output isn't correct
5 Incorrect 1 ms 8540 KB Output isn't correct
6 Incorrect 1 ms 8540 KB Output isn't correct
7 Incorrect 2 ms 8540 KB Output isn't correct
8 Incorrect 2 ms 8540 KB Output isn't correct
9 Incorrect 1 ms 8540 KB Output isn't correct
10 Incorrect 1 ms 8540 KB Output isn't correct