Submission #951273

# Submission time Handle Problem Language Result Execution time Memory
951273 2024-03-21T14:20:45 Z djs100201 Seats (IOI18_seats) C++17
11 / 100
318 ms 262144 KB
#include<bits/stdc++.h>
#include "seats.h"
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx2")
#define all(v) v.begin(),v.end()
using namespace std;
using ll = long long;
using P = pair<ll, ll>;
using PP = pair<ll, P>;
const ll n_ =2e5+100, inf = (ll)2e9 * (ll)1e9 + 7, mod = 998244353;
ll n, m, tc = 1, a, b, c, d, sum, x, y, z, base, ans, k;
ll gcd(ll x,ll y){
	if(!y)return x;
	return gcd(y,x%y);
}
struct node{
	P val;
	int cnt;
};
node merge(node a, node b){
	node ret=a;
	if(a.val==b.val){
		ret.cnt+=b.cnt;
		return ret;
	}
	if(a.val<b.val)return ret;
	return b;
}
P add(P a,P b){
	return {a.first+b.first,a.second+b.second};
}
class lazy_seg{
	public:
	vector<node> tree,A;
	vector<P>lazy;
	void start(int n)
	{
		// 0~n까지 쓰겠다.
		tree.resize(n * 4);
		lazy.resize(n * 4);
		A.resize(n * 4);
	}
	node init(ll N, ll s, ll e)
	{
		if (s == e)return tree[N]=A[s];
		ll mid = (s + e) / 2;
		return tree[N] = merge(init(N * 2, s, mid) , init(N * 2 + 1, mid + 1, e));
	}
	void update_lazy(ll N, ll s, ll e)
	{
		if (lazy[N].first==0 && lazy[N].second==0)return;
		tree[N].val=add(tree[N].val,lazy[N]);
		if (s != e)
		{	
			lazy[N*2]=add(lazy[N*2],lazy[N]);
			lazy[N*2+1]=add(lazy[N*2+1],lazy[N]);
		}
		lazy[N] = {0,0};
	}
	void update(ll N, ll s, ll e, ll l, ll r, P val)
	{
		update_lazy(N, s, e);
		if (l > e || r < s)
			return;
		if (l <= s && e <= r)
		{
			lazy[N] = val;
			update_lazy(N, s, e);
			return;
		}
		ll mid = (s + e) / 2;
		update(N * 2, s, mid, l, r, val);
		update(N * 2 + 1, mid + 1, e, l, r, val);
		tree[N]=merge(tree[N*2],tree[N*2+1]);
	}
	/*ll f(ll N, ll s, ll e, ll l, ll r)
	{
		update_lazy(N, s, e);
		if (l > e || r < s)
			return 0;
		if (l <= s && e <= r)
			return tree[N];
		ll mid = (s + e) / 2;
		return f(N * 2, s, mid, l, r) + f(N * 2 + 1, mid + 1, e, l, r);
	}
	*/
};
vector<vector<int>>arr,bit;
vector<int>F,S,N,M;
ll lim;
void pre_init(int y,int x){
	if(y==0){
		if(x==0){
			F[arr[y][x]]++;
		}
		else if(x==m){
			F[arr[y][x-1]]++;
		}
		else{
			int l=arr[y][x-1],r=arr[y][x];
			F[min(l,r)]++,F[max(l,r)]--;
		}
	}
	else if(y==n){
		if(x==0){
			F[arr[y-1][x]]++;
		}
		else if(x==m){
			F[arr[y-1][x-1]]++;
		}
		else{
			int l=arr[y-1][x-1],r=arr[y-1][x];
			F[min(l,r)]++,F[max(l,r)]--;
		}
	}
	else if(x==0){
		int u=arr[y-1][x],d=arr[y][x];
		F[min(u,d)]++,F[max(u,d)]--;
	}
	else if(x==m){
		int u=arr[y-1][x-1],d=arr[y][x-1];
		F[min(u,d)]++,F[max(u,d)]--;
	}
	else{
		//이때부터는 꼭짓점에 인접한 타일이 항상 4개 있는경우 크기에 따라서 정렬해두자.
		/*
		[0,1]
		[2,3]
		순서임
		*/
		vector<P>T;
		T.push_back({arr[y-1][x-1],0});
		T.push_back({arr[y-1][x],1});
		T.push_back({arr[y][x],2});
		T.push_back({arr[y][x-1],3});
		sort(all(T));
		ll ff=0;
		for(int i=0;i<4;i++){
			auto [a,b]=T[i];
			if(i==0)F[a]++;
			else if(i==1){
				F[a]--;
				if((T[0].second^T[1].second)==2){
					//마주보는 경우
					F[a]+=2;
					ff=2;
				}
			}
			else if(i==2){
				F[a]-=ff;
				S[a]++;
			}
			else S[a]--;
		}
	}
 
}
lazy_seg seg;
void give_initial_chart(int H, int W, std::vector<int> R, std::vector<int> C) {
	bit.resize(H+1);
	for(int i=0;i<=H;i++)bit[i].resize(W+1);
	arr.resize(H);
	for(int i=0;i<H;i++)arr[i].resize(W);
	n=H,m=W;
	N=R,M=C;
	seg.start(n*m);
	F.clear(),S.clear();
	F.resize(n*m),S.resize(n*m);
	//First값과 Second값의 PrefixSum
	for(int i=0;i<n*m;i++)arr[R[i]][C[i]]=i;
	for(int i=0;i<=n;i++)
		for(int j=0;j<=m;j++)
			pre_init(i,j);
	for(int i=0;i<n*m;i++){
		if(i)F[i]+=F[i-1],S[i]+=S[i-1];
		seg.A[i].val={F[i],S[i]};
		seg.A[i].cnt=1;
	}
	seg.init(1,0,n*m-1);
}
void query(int y,int x,int val){
	if(val<0 && bit[y][x])return;
	if(val>0 && !bit[y][x])return;
	bit[y][x]^=1;
	if(y==0){
		if(x==0){
			seg.update(1,0,n*m-1,arr[y][x],n*m-1,{val,0});
		}
		else if(x==m){
			seg.update(1,0,n*m-1,arr[y][x-1],n*m-1,{val,0});
		}
		else{
			int l=arr[y][x-1],r=arr[y][x];
			if(l>r)swap(l,r);
			seg.update(1,0,n*m-1,l,r-1,{val,0});
		}
	}
	else if(y==n){
		if(x==0){
			seg.update(1,0,n*m-1,arr[y-1][x],n*m-1,{val,0});
		}
		else if(x==m){
			seg.update(1,0,n*m-1,arr[y-1][x-1],n*m-1,{val,0});
		}
		else{
			int l=arr[y-1][x-1],r=arr[y-1][x];
			if(l>r)swap(l,r);
			seg.update(1,0,n*m-1,l,r-1,{val,0});
		}
	}
	else if(x==0){
		int u=arr[y-1][x],d=arr[y][x];
		if(d>u)swap(u,d);
		seg.update(1,0,n*m-1,d,u-1,{val,0});
	}
	else if(x==m){
		int u=arr[y-1][x-1],d=arr[y][x-1];
		if(d>u)swap(u,d);
		seg.update(1,0,n*m-1,d,u-1,{val,0});
	}
	else{
		//이때부터는 꼭짓점에 인접한 타일이 항상 4개 있는경우 크기에 따라서 정렬해두자.
		/*
		[0,1]
		[2,3]
		순서임
		*/
		vector<P>T;
		T.push_back({arr[y-1][x-1],0});
		T.push_back({arr[y-1][x],1});
		T.push_back({arr[y][x],2});
		T.push_back({arr[y][x-1],3});
		sort(all(T));
		seg.update(1,0,n*m-1,T[0].first,T[1].first-1,{val,0});
		if((T[0].second^T[1].second)==2){
			seg.update(1,0,n*m-1,T[1].first,T[2].first-1,{val*2,0});
		}
		seg.update(1,0,n*m-1,T[2].first,T[3].first-1,{0,val});
	}
 
}
int swap_seats(int a, int b) {
	query(N[a],M[a],-1);
	query(N[a]+1,M[a],-1);
	query(N[a]+1,M[a]+1,-1);
	query(N[a],M[a]+1,-1);
	
	query(N[b],M[b],-1);
	query(N[b]+1,M[b],-1);
	query(N[b]+1,M[b]+1,-1);
	query(N[b],M[b]+1,-1);
 
	arr[N[a]][M[a]]=b;
	arr[N[b]][M[b]]=a;
	swap(N[a],N[b]);
	swap(M[a],M[b]);
	
	query(N[a],M[a],1);
	query(N[a]+1,M[a],1);
	query(N[a]+1,M[a]+1,1);
	query(N[a],M[a]+1,1);
	
	query(N[b],M[b],1);
	query(N[b]+1,M[b],1);
	query(N[b]+1,M[b]+1,1);
	query(N[b],M[b]+1,1);
	P rec={4,0};
	if(seg.tree[1].val==rec)return seg.tree[1].cnt;
	else return 0;
}
 
# Verdict Execution time Memory Grader output
1 Correct 14 ms 600 KB Output is correct
2 Correct 24 ms 348 KB Output is correct
3 Correct 36 ms 512 KB Output is correct
4 Correct 15 ms 348 KB Output is correct
5 Correct 13 ms 348 KB Output is correct
6 Correct 28 ms 516 KB Output is correct
7 Correct 32 ms 348 KB Output is correct
8 Correct 27 ms 348 KB Output is correct
9 Correct 27 ms 348 KB Output is correct
10 Correct 34 ms 348 KB Output is correct
11 Correct 28 ms 348 KB Output is correct
12 Correct 16 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 600 KB Output is correct
2 Correct 24 ms 348 KB Output is correct
3 Correct 36 ms 512 KB Output is correct
4 Correct 15 ms 348 KB Output is correct
5 Correct 13 ms 348 KB Output is correct
6 Correct 28 ms 516 KB Output is correct
7 Correct 32 ms 348 KB Output is correct
8 Correct 27 ms 348 KB Output is correct
9 Correct 27 ms 348 KB Output is correct
10 Correct 34 ms 348 KB Output is correct
11 Correct 28 ms 348 KB Output is correct
12 Correct 16 ms 348 KB Output is correct
13 Correct 74 ms 3164 KB Output is correct
14 Correct 85 ms 3372 KB Output is correct
15 Correct 33 ms 3416 KB Output is correct
16 Correct 26 ms 4188 KB Output is correct
17 Correct 52 ms 3648 KB Output is correct
18 Correct 51 ms 3368 KB Output is correct
19 Correct 47 ms 3436 KB Output is correct
20 Correct 38 ms 3676 KB Output is correct
21 Correct 27 ms 3424 KB Output is correct
22 Correct 27 ms 4280 KB Output is correct
# Verdict Execution time Memory Grader output
1 Runtime error 211 ms 262144 KB Execution killed with signal 9
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 72 ms 3672 KB Output is correct
2 Correct 112 ms 26460 KB Output is correct
3 Runtime error 230 ms 262144 KB Execution killed with signal 9
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 33 ms 1420 KB Output is correct
2 Correct 67 ms 1384 KB Output is correct
3 Correct 120 ms 1484 KB Output is correct
4 Correct 169 ms 1728 KB Output is correct
5 Correct 318 ms 4248 KB Output is correct
6 Runtime error 212 ms 262144 KB Execution killed with signal 9
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 14 ms 600 KB Output is correct
2 Correct 24 ms 348 KB Output is correct
3 Correct 36 ms 512 KB Output is correct
4 Correct 15 ms 348 KB Output is correct
5 Correct 13 ms 348 KB Output is correct
6 Correct 28 ms 516 KB Output is correct
7 Correct 32 ms 348 KB Output is correct
8 Correct 27 ms 348 KB Output is correct
9 Correct 27 ms 348 KB Output is correct
10 Correct 34 ms 348 KB Output is correct
11 Correct 28 ms 348 KB Output is correct
12 Correct 16 ms 348 KB Output is correct
13 Correct 74 ms 3164 KB Output is correct
14 Correct 85 ms 3372 KB Output is correct
15 Correct 33 ms 3416 KB Output is correct
16 Correct 26 ms 4188 KB Output is correct
17 Correct 52 ms 3648 KB Output is correct
18 Correct 51 ms 3368 KB Output is correct
19 Correct 47 ms 3436 KB Output is correct
20 Correct 38 ms 3676 KB Output is correct
21 Correct 27 ms 3424 KB Output is correct
22 Correct 27 ms 4280 KB Output is correct
23 Runtime error 211 ms 262144 KB Execution killed with signal 9
24 Halted 0 ms 0 KB -