Submission #951272

# Submission time Handle Problem Language Result Execution time Memory
951272 2024-03-21T14:20:07 Z djs100201 Seats (IOI18_seats) C++17
11 / 100
323 ms 262144 KB
#include<bits/stdc++.h>
#include "seats.h"
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx2")
#define all(v) v.begin(),v.end()
using namespace std;
using ll = long long;
using P = pair<ll, ll>;
using PP = pair<ll, P>;
const ll n_ =2e5+100, inf = (ll)2e9 * (ll)1e9 + 7, mod = 998244353;
ll n, m, tc = 1, a, b, c, d, sum, x, y, z, base, ans, k;
ll gcd(ll x,ll y){
	if(!y)return x;
	return gcd(y,x%y);
}
struct node{
	P val;
	int cnt;
};
node merge(node a, node b){
	node ret=a;
	if(a.val==b.val){
		ret.cnt+=b.cnt;
		return ret;
	}
	if(a.val<b.val)return ret;
	return b;
}
P add(P a,P b){
	return {a.first+b.first,a.second+b.second};
}
class lazy_seg{
	public:
	vector<node> tree,A;
	vector<P>lazy;
	void start(int n)
	{
		// 0~n까지 쓰겠다.
		tree.resize(n * 4);
		lazy.resize(n * 4);
		A.resize(n * 4);
	}
	node init(ll N, ll s, ll e)
	{
		if (s == e)return tree[N]=A[s];
		ll mid = (s + e) / 2;
		return tree[N] = merge(init(N * 2, s, mid) , init(N * 2 + 1, mid + 1, e));
	}
	void update_lazy(ll N, ll s, ll e)
	{
		if (lazy[N].first==0 && lazy[N].second==0)return;
		tree[N].val=add(tree[N].val,lazy[N]);
		if (s != e)
		{	
			lazy[N*2]=add(lazy[N*2],lazy[N]);
			lazy[N*2+1]=add(lazy[N*2+1],lazy[N]);
		}
		lazy[N] = {0,0};
	}
	void update(ll N, ll s, ll e, ll l, ll r, P val)
	{
		update_lazy(N, s, e);
		if (l > e || r < s)
			return;
		if (l <= s && e <= r)
		{
			lazy[N] = val;
			update_lazy(N, s, e);
			return;
		}
		ll mid = (s + e) / 2;
		update(N * 2, s, mid, l, r, val);
		update(N * 2 + 1, mid + 1, e, l, r, val);
		tree[N]=merge(tree[N*2],tree[N*2+1]);
	}
	/*ll f(ll N, ll s, ll e, ll l, ll r)
	{
		update_lazy(N, s, e);
		if (l > e || r < s)
			return 0;
		if (l <= s && e <= r)
			return tree[N];
		ll mid = (s + e) / 2;
		return f(N * 2, s, mid, l, r) + f(N * 2 + 1, mid + 1, e, l, r);
	}
	*/
};
vector<vector<int>>arr,bit;
vector<int>F,S,N,M;
ll lim;
void pre_init(int y,int x){
	if(y==0){
		if(x==0){
			F[arr[y][x]]++;
		}
		else if(x==m){
			F[arr[y][x-1]]++;
		}
		else{
			int l=arr[y][x-1],r=arr[y][x];
			F[min(l,r)]++,F[max(l,r)]--;
		}
	}
	else if(y==n){
		if(x==0){
			F[arr[y-1][x]]++;
		}
		else if(x==m){
			F[arr[y-1][x-1]]++;
		}
		else{
			int l=arr[y-1][x-1],r=arr[y-1][x];
			F[min(l,r)]++,F[max(l,r)]--;
		}
	}
	else if(x==0){
		int u=arr[y-1][x],d=arr[y][x];
		F[min(u,d)]++,F[max(u,d)]--;
	}
	else if(x==m){
		int u=arr[y-1][x-1],d=arr[y][x-1];
		F[min(u,d)]++,F[max(u,d)]--;
	}
	else{
		//이때부터는 꼭짓점에 인접한 타일이 항상 4개 있는경우 크기에 따라서 정렬해두자.
		/*
		[0,1]
		[2,3]
		순서임
		*/
		vector<P>T;
		T.push_back({arr[y-1][x-1],0});
		T.push_back({arr[y-1][x],1});
		T.push_back({arr[y][x],2});
		T.push_back({arr[y][x-1],3});
		sort(all(T));
		ll ff=0;
		for(int i=0;i<4;i++){
			auto [a,b]=T[i];
			if(i==0)F[a]++;
			else if(i==1){
				F[a]--;
				if((T[0].second^T[1].second)==2){
					//마주보는 경우
					F[a]+=2;
					ff=2;
				}
			}
			else if(i==2){
				F[a]-=ff;
				S[a]++;
			}
			else S[a]--;
		}
	}

}
lazy_seg seg;
void give_initial_chart(int H, int W, std::vector<int> R, std::vector<int> C) {
	bit.resize(H+1);
	for(int i=0;i<=H;i++)bit[i].resize(W+1);
	arr.resize(H);
	for(int i=0;i<H;i++)arr[i].resize(W);
	n=H,m=W;
	N=R,M=C;
	seg.start(n*m);
	F.clear(),S.clear();
	F.resize(n*m),S.resize(n*m);
	//First값과 Second값의 PrefixSum
	for(int i=0;i<n*m;i++)arr[R[i]][C[i]]=i;
	for(int i=0;i<=n;i++)
		for(int j=0;j<=m;j++)
			pre_init(i,j);
	for(int i=0;i<n*m;i++){
		if(i)F[i]+=F[i-1],S[i]+=S[i-1];
		seg.A[i].val={F[i],S[i]};
		seg.A[i].cnt=1;
	}
	seg.init(1,0,n*m-1);
}
void query(int y,int x,int val){
	if(val<0 && bit[y][x])return;
	if(val>0 && !bit[y][x])return;
	bit[y][x]^=1;
	if(y==0){
		if(x==0){
			seg.update(1,0,n*m-1,arr[y][x],n*m-1,{val,0});
		}
		else if(x==m){
			seg.update(1,0,n*m-1,arr[y][x-1],n*m-1,{val,0});
		}
		else{
			int l=arr[y][x-1],r=arr[y][x];
			if(l>r)swap(l,r);
			seg.update(1,0,n*m-1,l,r-1,{val,0});
		}
	}
	else if(y==n){
		if(x==0){
			seg.update(1,0,n*m-1,arr[y-1][x],n*m-1,{val,0});
		}
		else if(x==m){
			seg.update(1,0,n*m-1,arr[y-1][x-1],n*m-1,{val,0});
		}
		else{
			int l=arr[y-1][x-1],r=arr[y-1][x];
			if(l>r)swap(l,r);
			seg.update(1,0,n*m-1,l,r-1,{val,0});
		}
	}
	else if(x==0){
		int u=arr[y-1][x],d=arr[y][x];
		if(d>u)swap(u,d);
		seg.update(1,0,n*m-1,d,u-1,{val,0});
	}
	else if(x==m){
		int u=arr[y-1][x-1],d=arr[y][x-1];
		if(d>u)swap(u,d);
		seg.update(1,0,n*m-1,d,u-1,{val,0});
	}
	else{
		//이때부터는 꼭짓점에 인접한 타일이 항상 4개 있는경우 크기에 따라서 정렬해두자.
		/*
		[0,1]
		[2,3]
		순서임
		*/
		vector<P>T;
		T.push_back({arr[y-1][x-1],0});
		T.push_back({arr[y-1][x],1});
		T.push_back({arr[y][x],2});
		T.push_back({arr[y][x-1],3});
		sort(all(T));
		seg.update(1,0,n*m-1,T[0].first,T[1].first-1,{val,0});
		if((T[0].second^T[1].second)==2){
			seg.update(1,0,n*m-1,T[1].first,T[2].first-1,{val*2,0});
		}
		seg.update(1,0,n*m-1,T[2].first,T[3].first-1,{0,val});
	}

}
int swap_seats(int a, int b) {
	query(N[a],M[a],-1);
	query(N[a]+1,M[a],-1);
	query(N[a]+1,M[a]+1,-1);
	query(N[a],M[a]+1,-1);
	
	query(N[b],M[b],-1);
	query(N[b]+1,M[b],-1);
	query(N[b]+1,M[b]+1,-1);
	query(N[b],M[b]+1,-1);

	arr[N[a]][M[a]]=b;
	arr[N[b]][M[b]]=a;
	swap(N[a],N[b]);
	swap(M[a],M[b]);
	
	query(N[a],M[a],1);
	query(N[a]+1,M[a],1);
	query(N[a]+1,M[a]+1,1);
	query(N[a],M[a]+1,1);
	
	query(N[b],M[b],1);
	query(N[b]+1,M[b],1);
	query(N[b]+1,M[b]+1,1);
	query(N[b],M[b]+1,1);
	P rec={4,0};
	assert(seg.tree[1].val==rec);
	return seg.tree[1].cnt;
	//if(seg.tree[1].val==rec)return seg.tree[1].cnt;
	//else return 0;
}

# Verdict Execution time Memory Grader output
1 Correct 12 ms 344 KB Output is correct
2 Correct 20 ms 596 KB Output is correct
3 Correct 36 ms 588 KB Output is correct
4 Correct 15 ms 600 KB Output is correct
5 Correct 12 ms 604 KB Output is correct
6 Correct 28 ms 592 KB Output is correct
7 Correct 31 ms 592 KB Output is correct
8 Correct 27 ms 596 KB Output is correct
9 Correct 27 ms 604 KB Output is correct
10 Correct 31 ms 584 KB Output is correct
11 Correct 27 ms 596 KB Output is correct
12 Correct 13 ms 600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 344 KB Output is correct
2 Correct 20 ms 596 KB Output is correct
3 Correct 36 ms 588 KB Output is correct
4 Correct 15 ms 600 KB Output is correct
5 Correct 12 ms 604 KB Output is correct
6 Correct 28 ms 592 KB Output is correct
7 Correct 31 ms 592 KB Output is correct
8 Correct 27 ms 596 KB Output is correct
9 Correct 27 ms 604 KB Output is correct
10 Correct 31 ms 584 KB Output is correct
11 Correct 27 ms 596 KB Output is correct
12 Correct 13 ms 600 KB Output is correct
13 Correct 73 ms 3548 KB Output is correct
14 Correct 83 ms 3568 KB Output is correct
15 Correct 34 ms 3416 KB Output is correct
16 Correct 25 ms 4444 KB Output is correct
17 Correct 52 ms 3580 KB Output is correct
18 Correct 52 ms 3548 KB Output is correct
19 Correct 47 ms 3624 KB Output is correct
20 Correct 37 ms 3932 KB Output is correct
21 Correct 25 ms 3420 KB Output is correct
22 Correct 26 ms 4440 KB Output is correct
# Verdict Execution time Memory Grader output
1 Runtime error 281 ms 262144 KB Execution killed with signal 9
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 71 ms 3440 KB Output is correct
2 Correct 100 ms 26460 KB Output is correct
3 Runtime error 207 ms 262144 KB Execution killed with signal 9
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 27 ms 1408 KB Output is correct
2 Correct 68 ms 1400 KB Output is correct
3 Correct 122 ms 1448 KB Output is correct
4 Correct 175 ms 1568 KB Output is correct
5 Correct 323 ms 4436 KB Output is correct
6 Runtime error 221 ms 262144 KB Execution killed with signal 9
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 12 ms 344 KB Output is correct
2 Correct 20 ms 596 KB Output is correct
3 Correct 36 ms 588 KB Output is correct
4 Correct 15 ms 600 KB Output is correct
5 Correct 12 ms 604 KB Output is correct
6 Correct 28 ms 592 KB Output is correct
7 Correct 31 ms 592 KB Output is correct
8 Correct 27 ms 596 KB Output is correct
9 Correct 27 ms 604 KB Output is correct
10 Correct 31 ms 584 KB Output is correct
11 Correct 27 ms 596 KB Output is correct
12 Correct 13 ms 600 KB Output is correct
13 Correct 73 ms 3548 KB Output is correct
14 Correct 83 ms 3568 KB Output is correct
15 Correct 34 ms 3416 KB Output is correct
16 Correct 25 ms 4444 KB Output is correct
17 Correct 52 ms 3580 KB Output is correct
18 Correct 52 ms 3548 KB Output is correct
19 Correct 47 ms 3624 KB Output is correct
20 Correct 37 ms 3932 KB Output is correct
21 Correct 25 ms 3420 KB Output is correct
22 Correct 26 ms 4440 KB Output is correct
23 Runtime error 281 ms 262144 KB Execution killed with signal 9
24 Halted 0 ms 0 KB -