Submission #948235

# Submission time Handle Problem Language Result Execution time Memory
948235 2024-03-18T00:43:38 Z Nhoksocqt1 Soccer Stadium (IOI23_soccer) C++17
35.5 / 100
396 ms 50292 KB
#include<bits/stdc++.h>
using namespace std;

#define inf 0x3f3f3f3f
#define sz(x) int((x).size())
#define fi first
#define se second
typedef long long ll;
typedef pair<int, int> ii;

mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
int Random(int l, int r) {
    return uniform_int_distribution<int>(l, r)(rng);
}

const int MAXN = 2003;
const int lx[] = {-1, 0, 0, 1}, ly[] = {0, -1, 1, 0};

struct State {
    int x, y, t;

    State(int _x = 0, int _y = 0, int _t = 0) : x(_x), y(_y), t(_t) {};
};

ii range[MAXN];
int sum[MAXN][MAXN], dp[MAXN][MAXN][4], nSize;
bool dx[MAXN][MAXN][4], tmp[MAXN][MAXN], isTree[MAXN][MAXN];

bool bfsCheck(int x, int y) {
    int cntEmpty(0);
    for (int i = 1; i <= nSize; ++i) {
        for (int j = 1; j <= nSize; ++j) {
            for (int t = 0; t < 4; ++t) {
                dp[i][j][t] = (isTree[i][j]) ? -1 : 1e9;
                dx[i][j][t] = 0;
            }

            cntEmpty += (!isTree[i][j]);
        }
    }

    deque<State> dq;
    for (int t = 0; t < 4; ++t) {
        dq.push_back(State(x, y, t));
        dp[x][y][t] = 1;
    }

    int maxdp(0), cnt(0);
    while(sz(dq)) {
        int x(dq.front().x), y(dq.front().y), t(dq.front().t);
        dq.pop_front();

        if(dx[x][y][t])
            continue;

        dx[x][y][t] = 1;
        for (int id = 0; id < 4; ++id) {
            int u(x + lx[id]), v(y + ly[id]);
            if(min(u, v) < 1 || max(u, v) > nSize || dp[u][v][id] <= dp[x][y][t] + (t != id))
                continue;

            dp[u][v][id] = dp[x][y][t] + (t != id);
            if(t == id) {
                dq.push_front(State(u, v, id));
            } else {
                dq.push_back(State(u, v, id));
            }
        }
    }

    for (int i = 1; i <= nSize; ++i) {
        for (int j = 1; j <= nSize; ++j) {
            int mindp = min({dp[i][j][0], dp[i][j][1], dp[i][j][2], dp[i][j][3]});
            maxdp = max(maxdp, mindp);
            cnt += (!isTree[i][j] && mindp < int(1e9));
        }
    }

    return (maxdp <= 2 && cnt == cntEmpty);
}

inline int getSum(int x, int y, int u, int v) {
    return sum[u][v] - sum[u][y - 1] - sum[x - 1][v] + sum[x - 1][y - 1];
}

bool checkGrid2(void) {
    int minL(nSize), maxR(0);
    bool hasOk(0);
    for (int i = 1; i <= nSize; ++i) {
        range[i] = {0, 0};
        bool hasEmpty(0);
        for (int j = 1; j <= nSize; ++j) {
            if(hasEmpty && isTree[i][j - 1] && !isTree[i][j])
                return false;

            hasEmpty |= (!isTree[i][j]);
            if(!isTree[i][j]) {
                range[i].se = j;
                if(!range[i].fi)
                    range[i].fi = j;
            }
        }

        if(hasOk && range[i].fi > 0 && range[i - 1].fi == 0)
            return false;

        hasOk |= (range[i].fi > 0);
        if(range[i].fi > 0)
            minL = min(minL, range[i].fi);

        maxR = max(maxR, range[i].se);
    }

    int upL(-1), upR(-1), downL(-1), downR(-1);
    int leftL(-1), leftR(-1), rightL(-1), rightR(-1);
    bool descL(0), descR(0);
    for (int i = 1; i <= nSize; ++i) {
        if(range[i].fi == 0)
            continue;

        if(i > 2 && descL && range[i - 1].fi > range[i].fi)
            return false;

        if(i > 2 && descR && range[i - 1].se < range[i].se)
            return false;

        if(i > 1 && range[i - 1].fi > 0 && range[i - 1].fi < range[i].fi)
            descL = 1;

        if(i > 1 && range[i - 1].se > 0 && range[i - 1].se > range[i].se)
            descR = 1;

        if(upL < 0)
            upL = range[i].fi, upR = range[i].se;

        downL = range[i].fi, downR = range[i].se;
        if(range[i].fi == minL) {
            leftR = i;
            if(leftL < 0)
                leftL = i;
        }

        if(range[i].se == maxR) {
            rightR = i;
            if(rightL < 0)
                rightL = i;
        }
    }

    for (int i = 1; i <= nSize; ++i) {
        if(range[i].fi <= 0)
            continue;

        int nowL = range[i].fi, nowR = range[i].se;
        if(!(nowL <= upL && upR <= nowR || upL <= nowL && nowR <= upR) || !(nowL <= downL && downR <= nowR || downL <= nowL && nowR <= downR))
            return false;
    }

    for (int i = 1; i <= nSize; ++i) {
        for (int j = 1; j <= nSize; ++j) {
            if(!isTree[j][i]) {
                int k(j);
                while(k <= nSize && !isTree[k][i])
                    ++k;

                --k;
                if(!(j <= leftL && leftR <= k || leftL <= j && k <= leftR) || !(j <= rightL && rightR <= k || rightL <= j && k <= rightR))
                    return false;

                break;
            }
        }
    }

    if(!(leftL <= rightL && rightR <= leftR || rightL <= leftL && leftR <= rightR))
        return false;

    if(!(upL <= downL && downR <= upR || downL <= upL && upR <= downR))
        return false;

    return true;
}

bool checkGrid3(void) {
    for (int i = 1; i <= nSize; ++i) {
        for (int j = 1; j <= nSize; ++j)
            tmp[j][i] = isTree[i][j];
    }

    for (int i = 1; i <= nSize; ++i) {
        for (int j = 1; j <= nSize; ++j)
            isTree[i][j] = tmp[i][j];
    }

    return checkGrid2();
}

bool checkGrid(void) {
    for (int i = 1; i <= nSize; ++i) {
        for (int j = 1; j <= nSize; ++j) {
            if(isTree[i][j])
                continue;

            if((i == 1) + (j == 1) + (i == nSize) + (j == nSize) + (i > 1 && isTree[i - 1][j]) + (j > 1 && isTree[i][j - 1]) + (j < nSize && isTree[i][j + 1]) + (i < nSize && isTree[i + 1][j]) >= 2 && !bfsCheck(i, j))
                return false;
        }
    }

    return true;
}

int calc(int i, int j) {
    return (i - 1 + j - 1) * nSize - (i - 1) * (j - 1);
}

int sub1(void) {
    for (int i = 1; i <= nSize; ++i) {
        for (int j = 1; j <= nSize; ++j) {
            if(isTree[i][j]) {
                return max({calc(i, j), calc(nSize - i + 1, j), calc(i, nSize - j + 1), calc(nSize - i + 1, nSize - j + 1)});
            }
        }
    }

    abort();
}

int sub2(void) {
    for (int i = 1; i <= nSize; ++i) {
        for (int j = 1; j <= nSize; ++j)
            tmp[i][j] = isTree[i][j];
    }

    int res(0);
    for (int mask = 0; mask < (1 << (nSize * nSize)); ++mask) {
        if(__builtin_popcount(mask) <= res)
            continue;

        bool check(1);
        for (int i = 1; i <= nSize; ++i) {
            for (int j = 1; j <= nSize; ++j) {
                if((mask >> ((i - 1) * nSize + j - 1) & 1) && isTree[i][j])
                    check = 0;

                isTree[i][j] = !(mask >> ((i - 1) * nSize + j - 1) & 1);
            }
        }

        if(check && checkGrid())
            res = __builtin_popcount(mask);

        for (int i = 1; i <= nSize; ++i) {
            for (int j = 1; j <= nSize; ++j)
                isTree[i][j] = tmp[i][j];
        }
    }

    return res;
}

int biggest_stadium(int n, vector<vector<int>> F) {
    nSize = n;

    int cntTree(0);
    for (int i = 1; i <= nSize; ++i) {
        for (int j = 1; j <= nSize; ++j) {
            isTree[i][j] = (F[i - 1][j - 1]);
            cntTree += isTree[i][j];
        }
    }

    if(cntTree == 1)
        return sub1();

    if(nSize <= 3)
        return sub2();

    //cout << checkGrid() << ' ' << (checkGrid2()) << ' ' << (checkGrid3()) << '\n';
    if(cntTree == 0 || checkGrid2() || checkGrid3())
        return nSize * nSize - cntTree;

    return 1;
}

#ifdef Nhoksocqt1

int main(void) {
    ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);

    #define TASK "soccer"
    if(fopen(TASK".inp", "r")) {
        freopen(TASK".inp", "r", stdin);
        freopen(TASK".out", "w", stdout);
    }

    vector<vector<int>> F;
    int n;
    cin >> n;

    F.resize(n);
    for (int i = 0; i < n; ++i) {
        F[i].resize(n);
        for (int j = 0; j < n; ++j) {
            cin >> F[i][j];
            //F[i][j] = min(1, max(0, Random(-4, 1))); cout << F[i][j] << " \n"[j + 1 == n];
        }
    }

    int ans = biggest_stadium(n, F);
    cout << "ANSWER: " << ans << '\n';

    return 0;
}

#endif // Nhoksocqt1

Compilation message

soccer.cpp: In function 'bool checkGrid2()':
soccer.cpp:155:26: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
  155 |         if(!(nowL <= upL && upR <= nowR || upL <= nowL && nowR <= upR) || !(nowL <= downL && downR <= nowR || downL <= nowL && nowR <= downR))
      |              ~~~~~~~~~~~~^~~~~~~~~~~~~~
soccer.cpp:155:91: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
  155 |         if(!(nowL <= upL && upR <= nowR || upL <= nowL && nowR <= upR) || !(nowL <= downL && downR <= nowR || downL <= nowL && nowR <= downR))
      |                                                                             ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~
soccer.cpp:167:33: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
  167 |                 if(!(j <= leftL && leftR <= k || leftL <= j && k <= leftR) || !(j <= rightL && rightR <= k || rightL <= j && k <= rightR))
      |                      ~~~~~~~~~~~^~~~~~~~~~~~~
soccer.cpp:167:93: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
  167 |                 if(!(j <= leftL && leftR <= k || leftL <= j && k <= leftR) || !(j <= rightL && rightR <= k || rightL <= j && k <= rightR))
      |                                                                                 ~~~~~~~~~~~~^~~~~~~~~~~~~~
soccer.cpp:175:26: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
  175 |     if(!(leftL <= rightL && rightR <= leftR || rightL <= leftL && leftR <= rightR))
      |          ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~
soccer.cpp:178:23: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
  178 |     if(!(upL <= downL && downR <= upR || downL <= upL && upR <= downR))
      |          ~~~~~~~~~~~~~^~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Partially correct 1 ms 4444 KB partial
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2392 KB ok
2 Correct 1 ms 2396 KB ok
3 Correct 1 ms 2396 KB ok
4 Correct 0 ms 2396 KB ok
5 Correct 1 ms 6492 KB ok
6 Correct 1 ms 2396 KB ok
7 Correct 2 ms 4696 KB ok
8 Correct 17 ms 6492 KB ok
9 Correct 262 ms 38228 KB ok
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2392 KB ok
2 Correct 1 ms 2396 KB ok
3 Correct 1 ms 6488 KB ok
4 Correct 1 ms 6492 KB ok
5 Correct 1 ms 6492 KB ok
6 Correct 1 ms 6492 KB ok
7 Correct 1 ms 6492 KB ok
8 Correct 1 ms 6604 KB ok
9 Correct 2 ms 6492 KB ok
10 Correct 1 ms 6492 KB ok
11 Correct 1 ms 6492 KB ok
12 Correct 1 ms 6492 KB ok
13 Correct 1 ms 6492 KB ok
# Verdict Execution time Memory Grader output
1 Partially correct 1 ms 4444 KB partial
2 Correct 1 ms 2392 KB ok
3 Correct 1 ms 2396 KB ok
4 Correct 1 ms 6488 KB ok
5 Correct 1 ms 6492 KB ok
6 Correct 1 ms 6492 KB ok
7 Correct 1 ms 6492 KB ok
8 Correct 1 ms 6492 KB ok
9 Correct 1 ms 6604 KB ok
10 Correct 2 ms 6492 KB ok
11 Correct 1 ms 6492 KB ok
12 Correct 1 ms 6492 KB ok
13 Correct 1 ms 6492 KB ok
14 Correct 1 ms 6492 KB ok
15 Partially correct 1 ms 4444 KB partial
16 Partially correct 1 ms 4444 KB partial
17 Partially correct 1 ms 4444 KB partial
18 Partially correct 1 ms 4440 KB partial
19 Partially correct 1 ms 4440 KB partial
20 Correct 1 ms 2396 KB ok
21 Correct 1 ms 2396 KB ok
22 Partially correct 1 ms 4444 KB partial
23 Partially correct 1 ms 4444 KB partial
24 Partially correct 1 ms 4444 KB partial
25 Partially correct 1 ms 4444 KB partial
26 Partially correct 1 ms 4444 KB partial
# Verdict Execution time Memory Grader output
1 Partially correct 1 ms 4444 KB partial
2 Correct 1 ms 2392 KB ok
3 Correct 1 ms 2396 KB ok
4 Correct 1 ms 2396 KB ok
5 Correct 0 ms 2396 KB ok
6 Correct 1 ms 6488 KB ok
7 Correct 1 ms 6492 KB ok
8 Correct 1 ms 6492 KB ok
9 Correct 1 ms 6492 KB ok
10 Correct 1 ms 6492 KB ok
11 Correct 1 ms 6604 KB ok
12 Correct 2 ms 6492 KB ok
13 Correct 1 ms 6492 KB ok
14 Correct 1 ms 6492 KB ok
15 Correct 1 ms 6492 KB ok
16 Correct 1 ms 6492 KB ok
17 Partially correct 1 ms 4444 KB partial
18 Partially correct 1 ms 4444 KB partial
19 Partially correct 1 ms 4444 KB partial
20 Partially correct 1 ms 4440 KB partial
21 Partially correct 1 ms 4440 KB partial
22 Correct 1 ms 2396 KB ok
23 Correct 1 ms 2396 KB ok
24 Partially correct 1 ms 4444 KB partial
25 Partially correct 1 ms 4444 KB partial
26 Partially correct 1 ms 4444 KB partial
27 Partially correct 1 ms 4444 KB partial
28 Partially correct 1 ms 4444 KB partial
29 Partially correct 1 ms 4440 KB partial
30 Partially correct 1 ms 4444 KB partial
31 Partially correct 1 ms 4444 KB partial
32 Partially correct 1 ms 4440 KB partial
33 Partially correct 1 ms 4440 KB partial
34 Correct 1 ms 2396 KB ok
35 Correct 1 ms 2396 KB ok
36 Partially correct 3 ms 4444 KB partial
37 Partially correct 1 ms 4444 KB partial
38 Partially correct 1 ms 4444 KB partial
39 Partially correct 1 ms 4440 KB partial
40 Partially correct 1 ms 4444 KB partial
41 Partially correct 1 ms 4444 KB partial
# Verdict Execution time Memory Grader output
1 Partially correct 1 ms 4444 KB partial
2 Correct 1 ms 2392 KB ok
3 Correct 1 ms 2396 KB ok
4 Correct 1 ms 2396 KB ok
5 Correct 0 ms 2396 KB ok
6 Correct 1 ms 6488 KB ok
7 Correct 1 ms 6492 KB ok
8 Correct 1 ms 6492 KB ok
9 Correct 1 ms 6492 KB ok
10 Correct 1 ms 6492 KB ok
11 Correct 1 ms 6604 KB ok
12 Correct 2 ms 6492 KB ok
13 Correct 1 ms 6492 KB ok
14 Correct 1 ms 6492 KB ok
15 Correct 1 ms 6492 KB ok
16 Correct 1 ms 6492 KB ok
17 Partially correct 1 ms 4444 KB partial
18 Partially correct 1 ms 4444 KB partial
19 Partially correct 1 ms 4444 KB partial
20 Partially correct 1 ms 4440 KB partial
21 Partially correct 1 ms 4440 KB partial
22 Correct 1 ms 2396 KB ok
23 Correct 1 ms 2396 KB ok
24 Partially correct 1 ms 4444 KB partial
25 Partially correct 1 ms 4444 KB partial
26 Partially correct 1 ms 4444 KB partial
27 Partially correct 1 ms 4444 KB partial
28 Partially correct 1 ms 4444 KB partial
29 Partially correct 1 ms 4440 KB partial
30 Partially correct 1 ms 4444 KB partial
31 Partially correct 1 ms 4444 KB partial
32 Partially correct 1 ms 4440 KB partial
33 Partially correct 1 ms 4440 KB partial
34 Correct 1 ms 2396 KB ok
35 Correct 1 ms 2396 KB ok
36 Partially correct 3 ms 4444 KB partial
37 Partially correct 1 ms 4444 KB partial
38 Partially correct 1 ms 4444 KB partial
39 Partially correct 1 ms 4440 KB partial
40 Partially correct 1 ms 4444 KB partial
41 Partially correct 1 ms 4444 KB partial
42 Partially correct 17 ms 11024 KB partial
43 Partially correct 18 ms 11096 KB partial
44 Partially correct 18 ms 11100 KB partial
45 Partially correct 18 ms 11100 KB partial
46 Partially correct 19 ms 11100 KB partial
47 Partially correct 18 ms 11100 KB partial
48 Correct 17 ms 7000 KB ok
49 Partially correct 17 ms 11148 KB partial
50 Partially correct 18 ms 11092 KB partial
51 Partially correct 17 ms 11100 KB partial
52 Partially correct 17 ms 11092 KB partial
53 Partially correct 17 ms 11100 KB partial
54 Partially correct 17 ms 11160 KB partial
55 Partially correct 18 ms 11100 KB partial
56 Partially correct 17 ms 11096 KB partial
57 Partially correct 18 ms 11344 KB partial
58 Partially correct 18 ms 11096 KB partial
59 Partially correct 18 ms 11100 KB partial
# Verdict Execution time Memory Grader output
1 Partially correct 1 ms 4444 KB partial
2 Correct 1 ms 2392 KB ok
3 Correct 1 ms 2396 KB ok
4 Correct 1 ms 2396 KB ok
5 Correct 0 ms 2396 KB ok
6 Correct 1 ms 6492 KB ok
7 Correct 1 ms 2396 KB ok
8 Correct 2 ms 4696 KB ok
9 Correct 17 ms 6492 KB ok
10 Correct 262 ms 38228 KB ok
11 Correct 1 ms 6488 KB ok
12 Correct 1 ms 6492 KB ok
13 Correct 1 ms 6492 KB ok
14 Correct 1 ms 6492 KB ok
15 Correct 1 ms 6492 KB ok
16 Correct 1 ms 6604 KB ok
17 Correct 2 ms 6492 KB ok
18 Correct 1 ms 6492 KB ok
19 Correct 1 ms 6492 KB ok
20 Correct 1 ms 6492 KB ok
21 Correct 1 ms 6492 KB ok
22 Partially correct 1 ms 4444 KB partial
23 Partially correct 1 ms 4444 KB partial
24 Partially correct 1 ms 4444 KB partial
25 Partially correct 1 ms 4440 KB partial
26 Partially correct 1 ms 4440 KB partial
27 Correct 1 ms 2396 KB ok
28 Correct 1 ms 2396 KB ok
29 Partially correct 1 ms 4444 KB partial
30 Partially correct 1 ms 4444 KB partial
31 Partially correct 1 ms 4444 KB partial
32 Partially correct 1 ms 4444 KB partial
33 Partially correct 1 ms 4444 KB partial
34 Partially correct 1 ms 4440 KB partial
35 Partially correct 1 ms 4444 KB partial
36 Partially correct 1 ms 4444 KB partial
37 Partially correct 1 ms 4440 KB partial
38 Partially correct 1 ms 4440 KB partial
39 Correct 1 ms 2396 KB ok
40 Correct 1 ms 2396 KB ok
41 Partially correct 3 ms 4444 KB partial
42 Partially correct 1 ms 4444 KB partial
43 Partially correct 1 ms 4444 KB partial
44 Partially correct 1 ms 4440 KB partial
45 Partially correct 1 ms 4444 KB partial
46 Partially correct 1 ms 4444 KB partial
47 Partially correct 17 ms 11024 KB partial
48 Partially correct 18 ms 11096 KB partial
49 Partially correct 18 ms 11100 KB partial
50 Partially correct 18 ms 11100 KB partial
51 Partially correct 19 ms 11100 KB partial
52 Partially correct 18 ms 11100 KB partial
53 Correct 17 ms 7000 KB ok
54 Partially correct 17 ms 11148 KB partial
55 Partially correct 18 ms 11092 KB partial
56 Partially correct 17 ms 11100 KB partial
57 Partially correct 17 ms 11092 KB partial
58 Partially correct 17 ms 11100 KB partial
59 Partially correct 17 ms 11160 KB partial
60 Partially correct 18 ms 11100 KB partial
61 Partially correct 17 ms 11096 KB partial
62 Partially correct 18 ms 11344 KB partial
63 Partially correct 18 ms 11096 KB partial
64 Partially correct 18 ms 11100 KB partial
65 Partially correct 264 ms 50004 KB partial
66 Partially correct 265 ms 50076 KB partial
67 Partially correct 242 ms 50008 KB partial
68 Partially correct 270 ms 50004 KB partial
69 Partially correct 266 ms 50204 KB partial
70 Partially correct 260 ms 50000 KB partial
71 Partially correct 266 ms 50000 KB partial
72 Partially correct 269 ms 50204 KB partial
73 Correct 252 ms 45904 KB ok
74 Correct 256 ms 45904 KB ok
75 Partially correct 264 ms 49952 KB partial
76 Partially correct 260 ms 50004 KB partial
77 Partially correct 263 ms 50000 KB partial
78 Partially correct 264 ms 50292 KB partial
79 Partially correct 242 ms 49956 KB partial
80 Partially correct 246 ms 50000 KB partial
81 Partially correct 258 ms 50004 KB partial
82 Partially correct 248 ms 49980 KB partial
83 Partially correct 251 ms 50004 KB partial
84 Partially correct 254 ms 50068 KB partial
85 Partially correct 255 ms 50256 KB partial
86 Partially correct 259 ms 50076 KB partial
87 Partially correct 259 ms 50084 KB partial
88 Partially correct 267 ms 50088 KB partial
89 Partially correct 271 ms 50004 KB partial
90 Partially correct 261 ms 50080 KB partial
91 Partially correct 274 ms 50112 KB partial
92 Partially correct 250 ms 50072 KB partial
93 Partially correct 251 ms 49944 KB partial
94 Partially correct 251 ms 50200 KB partial
95 Partially correct 244 ms 49948 KB partial
96 Partially correct 241 ms 50004 KB partial
97 Partially correct 252 ms 50088 KB partial
98 Partially correct 237 ms 50000 KB partial
99 Partially correct 263 ms 50080 KB partial
100 Partially correct 270 ms 50084 KB partial
101 Partially correct 264 ms 49940 KB partial
102 Partially correct 264 ms 50080 KB partial
103 Partially correct 274 ms 50264 KB partial
104 Partially correct 261 ms 50088 KB partial
105 Partially correct 262 ms 50000 KB partial
106 Partially correct 271 ms 50212 KB partial
107 Partially correct 270 ms 50000 KB partial
108 Partially correct 264 ms 50000 KB partial
109 Partially correct 396 ms 42676 KB partial