Submission #945766

#TimeUsernameProblemLanguageResultExecution timeMemory
945766vjudge1Magic Tree (CEOI19_magictree)C++17
6 / 100
717 ms1048580 KiB
#pragma GCC optimize("Ofast,unroll-loops") #pragma GCC target("avx,avx2,fma") #include <bits/stdc++.h> #define ff first #define ss second #define pb push_back #define all(x) x.begin(),x.end() #define rall(x) x.rbegin(),x.rend() //#define int long long #define rnd(l, r) uniform_int_distribution<int>(l, r)(rng) using namespace std; void fp(string name){freopen((name+".in").c_str(),"r",stdin); freopen((name+".out").c_str(),"w",stdout);} int pow(int a,int b,int m){int ans=1;while(b){if(b&1){ans=(ans*a)%m;}b>>=1;a=(a*a)%m;}return ans;} int binpow(int a,int b){int ans=1;while(b){if(b&1){ans=(ans*a);}b>>=1;a=(a*a);}return ans;} mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); const long long N = 1005, MX = 1e5 + 10; long long cost[MX][N], dp[MX][N]; vector <int> g[MX]; map <int,int> mp; void dfs(int v = 1, int par = 1, int time = 1){ dp[v][time] = max(dp[v][time - 1], cost[v][time]); long long sum = 0; for(auto to : g[v]){ if(to == par)continue; dfs(to, v, time); sum += dp[to][time]; dp[v][time] = max(dp[v][time], dp[to][time] + cost[v][time]); } dp[v][time] = max(dp[v][time], sum + cost[v][time]); } main(){ iostream::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); long long n, m, k; cin >> n >> m >> k; for(int i = 2; i <= n; i++){ int a; cin >> a; g[a].pb(i); g[i].pb(a); } vector < array <long long, 3 > > vp; for(int i = 1 ; i<= m; i++){ long long a, b, c; cin >> a >> b >> c; vp.pb({b, a, c}); } sort(all(vp)); long long cur = -1, prev = -1; for(auto &[a, b, c] : vp){ if(a != prev)cur++; prev = a; a = cur; swap(a, b); } for(auto &[a, b, c] : vp){ cost[a][b] = c; swap(a, b); } for(int i = 0; i <= cur; i++){ dfs(1, 1, i); } cout <<dp[1][cur] << endl; } /* * Before implementing the problem: Do I understand the problem correctly? Which places are tricky? What do I need to remember to implement them correctly? Which place is the heaviest by implementation? Can I do it simpler? Which place is the slowest? Where do I need to be careful about constant factors and where I can choose slower but simpler implementation? ---------------------------------- If not AC: Did you remember to do everything to handle the tricky places you thought about before? Is the solution correct? Do I understand the problem correctly? ---------------------------------- If you have a test on which the solution gives wrong answer: Is the solution doing what it was supposed to do? Is the problem in the code or in the idea? */

Compilation message (stderr)

magictree.cpp:38:1: warning: ISO C++ forbids declaration of 'main' with no type [-Wreturn-type]
   38 | main(){
      | ^~~~
magictree.cpp: In function 'void fp(std::string)':
magictree.cpp:15:29: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
   15 | void fp(string name){freopen((name+".in").c_str(),"r",stdin); freopen((name+".out").c_str(),"w",stdout);}
      |                      ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
magictree.cpp:15:70: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
   15 | void fp(string name){freopen((name+".in").c_str(),"r",stdin); freopen((name+".out").c_str(),"w",stdout);}
      |                                                               ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...