Submission #943733

# Submission time Handle Problem Language Result Execution time Memory
943733 2024-03-11T18:51:43 Z Pannda Fish 2 (JOI22_fish2) C++17
43 / 100
2349 ms 19740 KB
#include <bits/stdc++.h>
using namespace std;

struct Paint {
    struct Node {
        int mn, cnt;
        int lazy = 0;
        void add(int delta) {
            mn += delta;
            lazy += delta;
        }
        void merge(Node a, Node b) {
            mn = min(a.mn, b.mn);
            cnt = 0;
            if (a.mn == mn) cnt += a.cnt;
            if (b.mn == mn) cnt += b.cnt;
        }
    };

    int n;
    vector<Node> nodes;

    Paint(int n) : n(n), nodes(4 * n) {
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (l + 1 == r) {
                nodes[idx].mn = 0;
                nodes[idx].cnt = 1;
            } else {
                int m = (l + r) >> 1;
                self(self, 2 * idx + 1, l, m);
                self(self, 2 * idx + 2, m, r);
                nodes[idx].merge(nodes[2 * idx + 1], nodes[2 * idx + 2]);
            }
        };
        dfs(dfs, 0, 0, n);
    }

    void down(int idx) {
        nodes[2 * idx + 1].add(nodes[idx].lazy);
        nodes[2 * idx + 2].add(nodes[idx].lazy);
        nodes[idx].lazy = 0;
    }

    void add(int ql, int qr, int delta) {
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (r <= ql || qr <= l) return;
            if (ql <= l && r <= qr) return nodes[idx].add(delta);
            down(idx);
            int m = (l + r) >> 1;
            self(self, 2 * idx + 1, l, m);
            self(self, 2 * idx + 2, m, r);
            nodes[idx].merge(nodes[2 * idx + 1], nodes[2 * idx + 2]);
        };
        dfs(dfs, 0, 0, n);
    }

    int countZero(int ql, int qr) {
        int fetch = 0;
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (r <= ql || qr <= l) return;
            if (ql <= l && r <= qr) {
                fetch += nodes[idx].mn == 0 ? nodes[idx].cnt : 0;
                return;
            }
            down(idx);
            int m = (l + r) >> 1;
            self(self, 2 * idx + 1, l, m);
            self(self, 2 * idx + 2, m, r);
        };
        dfs(dfs, 0, 0, n);
        return fetch;
    }
};

struct SegmentWalk {
    int n;
    vector<int> mx;

    SegmentWalk(int n) : n(n), mx(4 * n, 0) {}

    void set(int i, int val) {
        auto dfs = [&](auto self, int idx, int l, int r) -> void {
            if (l + 1 == r) {
                mx[idx] = val;
            } else {
                int m = (l + r) >> 1;
                if (i < m) self(self, 2 * idx + 1, l, m);
                else self(self, 2 * idx + 2, m, r);
                mx[idx] = max(mx[2 * idx + 1], mx[2 * idx + 2]);
            }
        };
        dfs(dfs, 0, 0, n);
    }

    int walk(int ql, int qr, long long bound, bool request_leftmost) { // in [ql, qr), returns the leftmost (rightmost) position with value > 'bound'
        auto dfs = [&](auto self, int idx, int l, int r) -> int {
            if (r <= ql || qr <= l || mx[idx] <= bound) return -1;
            if (ql <= l && r <= qr) {
                while (l + 1 < r) {
                    int m = (l + r) >> 1;
                    if (request_leftmost) {
                        if (mx[2 * idx + 1] > bound) idx = 2 * idx + 1, r = m;
                        else idx = 2 * idx + 2, l = m;
                    } else {
                        if (mx[2 * idx + 2] > bound) idx = 2 * idx + 2, l = m;
                        else idx = 2 * idx + 1, r = m;
                    }
                }
                return l;
            }
            int m = (l + r) >> 1;
            if (request_leftmost) {
                int get = self(self, 2 * idx + 1, l, m);
                if (get != -1) return get;
                return self(self, 2 * idx + 2, m, r);
            } else {
                int get = self(self, 2 * idx + 2, m, r);
                if (get != -1) return get;
                return self(self, 2 * idx + 1, l, m);
            }
        };
        return dfs(dfs, 0, 0, n);
    }
};

struct Fenwick {
    int n;
    vector<long long> bit;

    Fenwick(int n) : n(n), bit(n + 1, 0) {}

    void add(int i, int delta) {
        for (i++; i <= n; i += i & -i) bit[i] += delta;
    }

    long long sum(int i) {
        long long res = 0;
        for (; i > 0; i -= i & -i) res += bit[i];
        return res;
    }

    long long sum(int l, int r) {
        return sum(r) - sum(l);
    }
};

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
//    freopen("inp.inp", "r", stdin);
//    freopen("out.out", "w", stdout);

    int n;
    cin >> n;

    vector<int> a(n);
    Fenwick fen(n);
    SegmentWalk segwalk(n);

    for (int i = 0; i < n; i++) {
        cin >> a[i];
        fen.add(i, a[i]);
        segwalk.set(i, a[i]);
    }

    auto findSaturatedInterval = [&](int ql, int qr, int &l, int &r, long long &sum) -> void { // O(log^2), find the tightest saturated interval (or [l, r)) containing the initial interval [l, r)
        while (ql < l || r < qr) {
            long long old_sum = sum;
            if (ql < l) {
                int p = segwalk.walk(ql, l, sum, false);
                if (p == -1) {
                    sum += fen.sum(ql, l);
                    l = ql;
                } else {
                    sum += fen.sum(p + 1, l);
                    l = p + 1;
                    if (sum >= a[p]) {
                        sum += a[p];
                        l = p;
                    }
                }
            }
            if (r < qr) {
                int p = segwalk.walk(r, qr, sum, true);
                if (p == -1) {
                    sum += fen.sum(r, qr);
                    r = qr;
                } else {
                    sum += fen.sum(r, p);
                    r = p;
                    if (sum >= a[p]) {
                        sum += a[p];
                        r = p + 1;
                    }
                }
            }
            if (sum == old_sum) break;
        }
    };

    auto findAllSaturatedIntervals = [&](int ql, int qr, int i) -> vector<array<int, 2>> { // O(log^2), find all saturated intervals containing i
        vector<array<int, 2>> res;
        int l = i, r = i + 1;
        long long sum = a[i];
        while (true) {
            findSaturatedInterval(ql, qr, l, r, sum);
            if (l == ql && r == qr) break;
            res.push_back({l, r});
            if (l == ql || (r < qr && a[r] <= a[l - 1])) {
                sum += a[r];
                r = r + 1;
            } else {
                sum += a[l - 1];
                l = l - 1;
            }
        }
        return res;
    };

    Paint paint(n);
    SegmentWalk wow(n);
    vector<set<int>> why(n);

    auto erase = [&](int ql, int qr) -> vector<array<int, 2>> { // erases all intervals containing [ql, qr), return the set of deleted intervals
        vector<array<int, 2>> res;
        if (ql < 0 || qr > n) return res;
        while (true) {
            int l = wow.walk(0, ql + 1, qr - 1, true);
            if (l == -1) break;
            int r = *why[l].rbegin();
            res.push_back({l, r});
            paint.add(l, r, -1);
            why[l].erase(r);
            if (why[l].empty()) wow.set(l, 0);
            else wow.set(l, *why[l].rbegin());
        }
        return res;
    };

    auto insert = [&](int l, int r) -> void {
        if (why[l].count(r)) return;
        why[l].insert(r);
        wow.set(l, *why[l].rbegin());
        paint.add(l, r, +1);
    };

    for (int i = 0; i < n; i++) {
        int l = i, r = i + 1;
        long long sum = a[i];
        findSaturatedInterval(0, n, l, r, sum);
        if (l != 0 || r != n) insert(l, r);
    }

    int q;
    cin >> q;
    while (q--) {
        int type;
        cin >> type;
        if (type == 1) {
            int i, x;
            cin >> i >> x;
            i--;
            auto subinsert = [&](int i) -> void {
                if (i < 0 || i >= n) return;
                for (auto [l, r] : findAllSaturatedIntervals(0, n, i)) insert(l, r);
            };
            erase(i - 1, i);
            erase(i, i + 1);
            erase(i + 1, i + 2);
            fen.add(i, -a[i] + x);
            a[i] = x;
            segwalk.set(i, x);
            subinsert(i - 1);
            subinsert(i);
            subinsert(i + 1);
        }
        if (type == 2) {
            int l, r;
            cin >> l >> r;
            l--;
            vector<array<int, 2>> erase0 = erase(l - 1, l + 1);
            vector<array<int, 2>> erase1 = erase(r - 1, r + 1);
            vector<array<int, 2>> insert0 = findAllSaturatedIntervals(l, r, l);
            vector<array<int, 2>> insert1 = findAllSaturatedIntervals(l, r, r - 1);
            for (auto [l, r] : insert0) paint.add(l, r, +1);
            for (auto [l, r] : insert1) paint.add(l, r, +1);
            cout << paint.countZero(l, r) << '\n';
            for (auto [l, r] : insert0) paint.add(l, r, -1);
            for (auto [l, r] : insert1) paint.add(l, r, -1);
            for (auto [l, r] : erase0) insert(l, r);
            for (auto [l, r] : erase1) insert(l, r);
        }
    }
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 8 ms 556 KB Output is correct
6 Incorrect 8 ms 348 KB Output isn't correct
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 110 ms 18032 KB Output is correct
3 Correct 109 ms 17488 KB Output is correct
4 Correct 108 ms 18164 KB Output is correct
5 Correct 109 ms 17492 KB Output is correct
6 Correct 71 ms 16096 KB Output is correct
7 Correct 111 ms 15188 KB Output is correct
8 Correct 79 ms 15952 KB Output is correct
9 Correct 131 ms 15344 KB Output is correct
10 Correct 100 ms 15752 KB Output is correct
11 Correct 91 ms 15700 KB Output is correct
12 Correct 82 ms 15956 KB Output is correct
13 Correct 99 ms 15932 KB Output is correct
14 Correct 83 ms 17304 KB Output is correct
15 Correct 87 ms 17232 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 8 ms 556 KB Output is correct
6 Incorrect 8 ms 348 KB Output isn't correct
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 110 ms 18032 KB Output is correct
3 Correct 109 ms 17488 KB Output is correct
4 Correct 108 ms 18164 KB Output is correct
5 Correct 109 ms 17492 KB Output is correct
6 Correct 71 ms 16096 KB Output is correct
7 Correct 111 ms 15188 KB Output is correct
8 Correct 79 ms 15952 KB Output is correct
9 Correct 131 ms 15344 KB Output is correct
10 Correct 100 ms 15752 KB Output is correct
11 Correct 91 ms 15700 KB Output is correct
12 Correct 82 ms 15956 KB Output is correct
13 Correct 99 ms 15932 KB Output is correct
14 Correct 83 ms 17304 KB Output is correct
15 Correct 87 ms 17232 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Incorrect 2349 ms 19740 KB Output isn't correct
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 110 ms 18032 KB Output is correct
3 Correct 109 ms 17488 KB Output is correct
4 Correct 108 ms 18164 KB Output is correct
5 Correct 109 ms 17492 KB Output is correct
6 Correct 71 ms 16096 KB Output is correct
7 Correct 111 ms 15188 KB Output is correct
8 Correct 79 ms 15952 KB Output is correct
9 Correct 131 ms 15344 KB Output is correct
10 Correct 100 ms 15752 KB Output is correct
11 Correct 91 ms 15700 KB Output is correct
12 Correct 82 ms 15956 KB Output is correct
13 Correct 99 ms 15932 KB Output is correct
14 Correct 83 ms 17304 KB Output is correct
15 Correct 87 ms 17232 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 1905 ms 18440 KB Output is correct
18 Correct 996 ms 18260 KB Output is correct
19 Correct 1812 ms 18260 KB Output is correct
20 Correct 914 ms 18516 KB Output is correct
21 Correct 1923 ms 18216 KB Output is correct
22 Correct 1110 ms 18268 KB Output is correct
23 Correct 1713 ms 18124 KB Output is correct
24 Correct 966 ms 18220 KB Output is correct
25 Correct 1582 ms 18036 KB Output is correct
26 Correct 372 ms 16332 KB Output is correct
27 Correct 479 ms 16260 KB Output is correct
28 Correct 754 ms 17104 KB Output is correct
29 Correct 472 ms 16612 KB Output is correct
30 Correct 462 ms 16260 KB Output is correct
31 Correct 867 ms 17136 KB Output is correct
32 Correct 940 ms 17776 KB Output is correct
33 Correct 711 ms 16396 KB Output is correct
34 Correct 899 ms 18096 KB Output is correct
35 Correct 746 ms 16212 KB Output is correct
36 Correct 895 ms 17524 KB Output is correct
37 Correct 845 ms 17392 KB Output is correct
38 Correct 691 ms 17176 KB Output is correct
39 Correct 495 ms 17616 KB Output is correct
40 Correct 374 ms 17492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 8 ms 556 KB Output is correct
6 Incorrect 8 ms 348 KB Output isn't correct
7 Halted 0 ms 0 KB -