# | Submission time | Handle | Problem | Language | Result | Execution time | Memory |
---|---|---|---|---|---|---|---|
942754 | 2024-03-11T03:58:37 Z | vjudge1 | Fibonacci representations (CEOI18_fib) | C++17 | 1 ms | 604 KB |
#pragma GCC optimize("Ofast,unroll-loops") #pragma GCC target("avx,avx2,fma") #include <bits/stdc++.h> #define ff first #define ss second #define pb push_back #define all(x) x.begin(),x.end() #define rall(x) x.rbegin(),x.rend() #define int long long #define rnd(l, r) uniform_int_distribution<int>(l, r)(rng) using namespace std; void fp(string name){freopen((name+".in").c_str(),"r",stdin); freopen((name+".out").c_str(),"w",stdout);} int pow(int a,int b,int m){int ans=1;while(b){if(b&1){ans=(ans*a)%m;}b>>=1;a=(a*a)%m;}return ans;} int binpow(int a,int b){int ans=1;while(b){if(b&1){ans=(ans*a);}b>>=1;a=(a*a);}return ans;} mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); const int N = 5005, mxc = 105, inf = 1e18, mod = 1e9 + 7; vector <int> fib = {1, 2}, pref = {1, 3}; int ways(int x, int pos = 50){; //system("pause"); if(pos == -1){ return (x == 0); } if(x < fib[pos])return ways(x, pos - 1); if(pos >= 2 && (pos == 2 && x - fib[pos] == 0 || pos != 2 && x - fib[pos] <= fib[pos - 3])) return (ways(x - fib[pos], pos - 3) * 2) % mod; else return ways(x - fib[pos], pos - 1) % mod; } main(){ iostream::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); for(int i = 3; i <= 120; i++){ fib.pb(fib[i - 2] + fib[i - 3]); pref.pb(fib.back() + pref.back()); } int n; cin >> n; vector <int> v(n + 1); int cur = 0; for(int i = 1; i <= n; i++){ cin >> v[i]; cur += fib[v[i] - 1]; //cout << fib[v[i] - 1] <<"-"; int res = ways(cur); cout << res << endl; } } /* * Before implementing the problem: Do I understand the problem correctly? Which places are tricky? What do I need to remember to implement them correctly? Which place is the heaviest by implementation? Can I do it simpler? Which place is the slowest? Where do I need to be careful about constant factors and where I can choose slower but simpler implementation? ---------------------------------- If not AC: Did you remember to do everything to handle the tricky places you thought about before? Is the solution correct? Do I understand the problem correctly? ---------------------------------- If you have a test on which the solution gives wrong answer: Is the solution doing what it was supposed to do? Is the problem in the code or in the idea? */
Compilation message
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
1 | Incorrect | 1 ms | 344 KB | Output isn't correct |
2 | Halted | 0 ms | 0 KB | - |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
1 | Incorrect | 1 ms | 344 KB | Output isn't correct |
2 | Halted | 0 ms | 0 KB | - |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
1 | Incorrect | 0 ms | 344 KB | Output isn't correct |
2 | Halted | 0 ms | 0 KB | - |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
1 | Incorrect | 1 ms | 344 KB | Output isn't correct |
2 | Halted | 0 ms | 0 KB | - |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
1 | Runtime error | 1 ms | 604 KB | Execution killed with signal 11 |
2 | Halted | 0 ms | 0 KB | - |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
1 | Incorrect | 1 ms | 344 KB | Output isn't correct |
2 | Halted | 0 ms | 0 KB | - |