Submission #936424

# Submission time Handle Problem Language Result Execution time Memory
936424 2024-03-01T19:05:37 Z EJIC_B_KEDAX Comparing Plants (IOI20_plants) C++17
75 / 100
2663 ms 293292 KB
#include <bits/stdc++.h>
#include "plants.h"

#define x first
#define y second

using ll = long long;
 
using namespace std;
 
const int LG = 19, N = 1 << LG;
int st1[2 * N], st2[2 * N], lz1[2 * N], lz2[2 * N], timer = 1, fndl[2 * N], fndl2[2 * N], used3[N], level[N], kk, nn;
pair<int, int> fnd[2 * N], binupl[LG][N];
pair<int, ll> binupr[LG][N], fnd2[2 * N];
vector<pair<int, int>> mst[2 * N];



void push(int i, int st[], int lz[]) {
	if (lz[i] != -1) {
		st[2 * i + 1] = lz[i];
		st[2 * i + 2] = lz[i];
		lz[2 * i + 1] = lz[i];
		lz[2 * i + 2] = lz[i];
		lz[i] = -1;
	}
}

void set_seg(int l, int r, int x, int st[], int lz[], int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		st[i] = x;
		lz[i] = x;
		return;
	}
	if (l1 > r || r1 < l) {
		return;
	}
	push(i, st, lz);
	set_seg(l, r, x, st, lz, l1, (l1 + r1) / 2, 2 * i + 1);
	set_seg(l, r, x, st, lz, (l1 + r1) / 2 + 1, r1, 2 * i + 2);
	st[i] = min(st[2 * i + 1], st[2 * i + 2]);
}

int get(int ind, int st[], int lz[], int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 == ind && r1 == ind) {
		return st[i];
	}
	if (l1 > ind || r1 < ind) {
		return INT32_MAX;
	}
	push(i, st, lz);
	return min(get(ind, st, lz, l1, (l1 + r1) / 2, 2 * i + 1), get(ind, st, lz, (l1 + r1) / 2 + 1, r1, 2 * i + 2));
}

void push(int i) {
	fnd[2 * i + 1].x += fndl[i];
	fnd[2 * i + 2].x += fndl[i];
	fndl[2 * i + 1] += fndl[i];
	fndl[2 * i + 2] += fndl[i];
	fndl[i] = 0;
}

void push1(int i) {
	fnd2[2 * i + 1].x += fndl2[i];
	fnd2[2 * i + 2].x += fndl2[i];
	fndl2[2 * i + 1] += fndl2[i];
	fndl2[2 * i + 2] += fndl2[i];
	fndl2[i] = 0;
}

void add_seg(int l, int r, int x, int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		fnd[i].x += x;
		fndl[i] += x;
		return;
	}
	if (l1 > r || r1 < l) {
		return;
	}
	push(i);
	add_seg(l, r, x, l1, (l1 + r1) / 2, 2 * i + 1);
	add_seg(l, r, x, (l1 + r1) / 2 + 1, r1, 2 * i + 2);
	fnd[i] = min(fnd[2 * i + 1], fnd[2 * i + 2]);
}

pair<int, int> get_min(int l, int r, int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		return fnd[i];
	}
	if (l1 > r || r1 < l) {
		return {INT32_MAX, -1};
	}
	push(i);
	return min(get_min(l, r, l1, (l1 + r1) / 2, 2 * i + 1), get_min(l, r, (l1 + r1) / 2 + 1, r1, 2 * i + 2));
}

void add_seg1(int l, int r, int x, int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		fnd2[i].x += x;
		fndl2[i] += x;
		return;
	}
	if (l1 > r || r1 < l) {
		return;
	}
	push1(i);
	add_seg1(l, r, x, l1, (l1 + r1) / 2, 2 * i + 1);
	add_seg1(l, r, x, (l1 + r1) / 2 + 1, r1, 2 * i + 2);
	fnd2[i] = min(fnd2[2 * i + 1], fnd2[2 * i + 2]);
}

pair<int, int> get_min1(int l, int r, int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		return fnd2[i];
	}
	if (l1 > r || r1 < l) {
		return {INT32_MAX, -1};
	}
	push1(i);
	return min(get_min1(l, r, l1, (l1 + r1) / 2, 2 * i + 1), get_min1(l, r, (l1 + r1) / 2 + 1, r1, 2 * i + 2));
}

pair<int, int> find_max(int i, int v) {
	int l = -1, r = mst[i].size();
	while (r - l > 1) {
		int m = (r + l) / 2;
		if (mst[i][m].x >= v) {
			r = m;
		} else {
			l = m;
		}
	}
	return l == -1 ? make_pair(-1, N) : mst[i][l];
}

pair<int, int> get_max(int l, int r, int v) {
	l += N - 1;
	r += N - 1;
	pair<int, int> res = {-1, -1};
	while (l <= r) {
		if (~l & 1) {
			res = max(res, find_max(l++, v));
		}
		if (r & 1) {
			res = max(res, find_max(r--, v));
		}
		l = (l - 1) / 2;
		r = (r - 1) / 2;
	}
	return res;
}

void mrg(int to, int a, int b) {
	mst[to].resize(mst[a].size() + mst[b].size());
	std::merge(mst[a].begin(), mst[a].end(), mst[b].begin(), mst[b].end(), mst[to].begin());
}

void init(int k, vector<int> r) {
	kk = k;
    int n = r.size();
    nn = n;
    int ok = 0;
    for (int i = 0; i < 2 * N; i++) {
    	st1[i] = -1;
    	st2[i] = -1;
    	lz1[i] = -1;
    	lz2[i] = -1;
    }
    for (int i = 0; i < N; i++) {
    	fnd[i + N - 1].y = i;
    	fnd2[i + N - 1].y = i;
    	level[i] = n;
    }
    for (int i = 0; i < n; i++) {
    	add_seg(i, i, r[i]);
    	add_seg1(i, i, r[i]);
		if (r[i] == 0) {
			used3[i] = 1;
			if (i + k > n) {
				add_seg(i + 1, n - 1, 1);
				add_seg(0, i + k - n - 1, 1);
			} else {
				add_seg(i + 1, i + k - 1, 1);
			}
		}
    }
    while (ok < n) {
    	auto [value, i] = get_min(0, n - 1);
    	// cout << i << '\n';
    	// for (int i = 0; i < n; i++) {
    	// 	cout << get_min(i, i).x << ' ';
    	// }
    	// cout << '\n';
    	if (value) {
    		// cout << value << ' ' << ok << '\n';
    		exit(1);
    	}
    	int tmp1 = get(i, st1, lz1), tmp2 = get(i, st2, lz2);
    	if (tmp1 != -1) {
    		level[i] = min(level[i], level[tmp1] - 1);
    	}
    	if (tmp2 != -1) {
    		level[i] = min(level[i], level[tmp2] - 1);
    	}
    	vector<int> z;
        if (i + k - 1 < n) {
    		set_seg(i + 1, i + k - 1, i, st2, lz2);
    		add_seg(i + 1, i + k - 1, -1);
    	} else {
    		set_seg(i + 1, n - 1, i, st2, lz2);
    		set_seg(0, i + k - 1 - n, i, st2, lz2);
    		add_seg(i + 1, n - 1, -1);
    		add_seg(0, i + k - 1 - n, -1);
    	}
    	if (i >= k - 1) {
    		add_seg(i - k + 1, i - 1, -1);
    		add_seg1(i - k + 1, i - 1, -1);
    		int left = i - k + 1;
    		while (left <= i - 1 && !get_min1(left, i - 1).x) {
    			z.push_back(get_min1(left, i - 1).y);
    			assert(left <= z.back());
    			left = z.back() + 1;
    		}
    		set_seg(i - k + 1, i - 1, i, st1, lz1);
    	} else {
    		add_seg(0, i - 1, -1);
    		add_seg1(0, i - 1, -1);
    		set_seg(0, i - 1, i, st1, lz1);
    		add_seg(n + 1 - k + i, n - 1, -1);
    		add_seg1(n + 1 - k + i, n - 1, -1);
    		set_seg(n + 1 - k + i, n - 1, i, st1, lz1);
    		int left = 0;
    		while (left <= i - 1 && !get_min1(left, i - 1).x) {
    			z.push_back(get_min1(left, i - 1).y);
    			assert(left <= z.back());
    			left = z.back() + 1;
    		}
    		left = n + 1 - k + i;
    		while (left <= n - 1 && !get_min1(left, n - 1).x) {
    			z.push_back(get_min1(left, n - 1).y);
    			assert(left <= z.back());
    			left = z.back() + 1;
    		}
    	}
    	for (int j : z) {
    		if (!used3[j]) {
				if (j + k > n) {
					add_seg(j + 1, n - 1, 1);
					add_seg(0, j + k - n - 1, 1);
				} else {
					add_seg(j + 1, j + k - 1, 1);
				}
				used3[j] = 1;
			}
		}
        add_seg(i, i, INT32_MAX / 2);
        add_seg1(i, i, INT32_MAX / 2);
    	ok++;
    }
    // for (int i = 0; i < n; i++) {
    // 	cout << level[i] << ' ';
    // }
    // cout << '\n';
    // for (int i = 0; i < n; i++) {
    // 	mst[N - 1 + i].emplace_back(level[i], i);
    // }
    // for (int i = N - 2; i >= 0; i--) {
    // 	mrg(i, 2 * i + 1, 2 * i + 2);
    // }
    set<pair<int, int>> st1;
    set<pair<int, int>> st2;
    for (int i = n - k + 1; i < n; i++) {
    	st1.emplace(-level[i], i);
    }
    for (int i = 1; i < k; i++) {
    	st2.emplace(-level[i], i);
    }
    for (int i = 0; i < n; i++) {
    	auto lb1 = st1.lower_bound({-level[i], N});
    	if (lb1 == st1.end()) {
    		binupl[0][i].x = i;
    	} else {
    		binupl[0][i].x = (*lb1).y;
    	}
    	st1.erase({-level[(i - k + 1 + n) % n], (i - k + 1 + n) % n});
    	st1.emplace(-level[i], i);
    	// if (i >= k - 1) {
    	// 	binupl[0][i].x = get_max(i - k + 1, i - 1, level[i]).y;
    	// } else {
    	// 	binupl[0][i].x = max(get_max(0, i - 1, level[i]), get_max(n + i - k + 1, n - 1, level[i])).y;
    	// }
    	// if (binupl[0][i].x == N) {
    	// 	binupl[0][i].x = i;
    	// }
    	binupl[0][i].y = i - binupl[0][i].x;
    	if (binupl[0][i].y < 0) {
    		binupl[0][i].y += n;
    	}
    	auto lb2 = st2.lower_bound({-level[i], N});
    	if (lb2 == st2.end()) {
    		binupr[0][i].x = i;
    	} else {
    		binupr[0][i].x = (*lb2).y;
    	}
    	st2.erase({-level[i + 1], i + 1});
    	st2.emplace(-level[(i + k) % n], (i + k) % n);
    	// if (i + k - 1 < n) {
    	// 	binupr[0][i].x = get_max(i + 1, i + k - 1, level[i]).y;
    	// } else {
    	// 	binupr[0][i].x = max(get_max(i + 1, n - 1, level[i]), get_max(0, i + k - 1 - n, level[i])).y;
    	// }
    	// if (binupr[0][i].x == N) {
    	// 	binupr[0][i].x = i;
    	// }
    	binupr[0][i].y = binupr[0][i].x - i;
    	if (binupr[0][i].y < 0) {
    		binupr[0][i].y += n;
    	}
    }
    for (int l = 1; l < LG; l++) {
    	for (int i = 0; i < n; i++) {
    		binupl[l][i].x = binupl[l - 1][binupl[l - 1][i].x].x;
    		binupr[l][i].x = binupr[l - 1][binupr[l - 1][i].x].x;
    		binupl[l][i].y = binupl[l - 1][binupl[l - 1][i].x].y + binupl[l - 1][i].y;
    		binupr[l][i].y = binupr[l - 1][binupr[l - 1][i].x].y + binupr[l - 1][i].y;
    	}
    }
}

bool try_compare(int x, int y) {
	int dist = x - y, nw = x;
	if (dist < 0) {
		dist += nn;
	}
	dist -= kk - 1;
	if (dist <= 0) {
		// cout << "! " << nw << '\n';
		return true;
	} 
	for (int i = LG - 1; i >= 0; i--) {
		if (binupl[i][nw].y < dist) {
			dist -= binupl[i][nw].y;
			nw = binupl[i][nw].x;
		}
	}
	// assert(dist > 0);
	dist -= binupl[0][nw].y;
	nw = binupl[0][nw].x;
	if (level[nw] > level[y] && dist <= 0) {
		// cout << "!! " << nw << '\n';
		return true;
	}
	dist = y - x, nw = x;
	if (dist < 0) {
		dist += nn;
	}
	dist -= kk - 1;
	if (dist <= 0) {
		// cout << "!!! " << nw << '\n';
		return true;
	}
	for (int i = LG - 1; i >= 0; i--) {
		if (binupr[i][nw].y < dist) {
			dist -= binupr[i][nw].y;
			nw = binupr[i][nw].x;
		}
	}
	// assert(dist > 0);
	dist -= binupr[0][nw].y;
	nw = binupr[0][nw].x;
	if (level[nw] > level[y] && dist <= 0) {
		// cout << "!!!! " << nw << '\n';
		return true;
	}
	return false;
}
 
int compare_plants(int x, int y) {
	if (try_compare(x, y) && level[x] > level[y]) {
		return 1;
	}
	if (try_compare(y, x) && level[y] > level[x]) {
		return -1;
	}
	// if (level[x] > level[y]) {
	// 	return 1;
	// }
	// if (level[y] > level[x]) {
	// 	return -1;
	// }
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 23 ms 150036 KB Output is correct
2 Correct 21 ms 150232 KB Output is correct
3 Correct 22 ms 150108 KB Output is correct
4 Correct 20 ms 150248 KB Output is correct
5 Correct 22 ms 150108 KB Output is correct
6 Correct 264 ms 152916 KB Output is correct
7 Correct 439 ms 192048 KB Output is correct
8 Correct 1642 ms 274496 KB Output is correct
9 Correct 1547 ms 274408 KB Output is correct
10 Correct 1581 ms 274512 KB Output is correct
11 Correct 1448 ms 274492 KB Output is correct
12 Correct 1497 ms 274480 KB Output is correct
13 Correct 1310 ms 274512 KB Output is correct
14 Correct 1559 ms 274472 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 23 ms 150296 KB Output is correct
2 Correct 20 ms 150108 KB Output is correct
3 Correct 21 ms 150248 KB Output is correct
4 Correct 22 ms 150196 KB Output is correct
5 Correct 23 ms 150108 KB Output is correct
6 Correct 30 ms 150352 KB Output is correct
7 Correct 123 ms 153304 KB Output is correct
8 Correct 23 ms 150100 KB Output is correct
9 Correct 30 ms 150300 KB Output is correct
10 Correct 105 ms 153428 KB Output is correct
11 Correct 108 ms 153068 KB Output is correct
12 Correct 121 ms 153424 KB Output is correct
13 Correct 102 ms 153516 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 23 ms 150296 KB Output is correct
2 Correct 20 ms 150108 KB Output is correct
3 Correct 21 ms 150248 KB Output is correct
4 Correct 22 ms 150196 KB Output is correct
5 Correct 23 ms 150108 KB Output is correct
6 Correct 30 ms 150352 KB Output is correct
7 Correct 123 ms 153304 KB Output is correct
8 Correct 23 ms 150100 KB Output is correct
9 Correct 30 ms 150300 KB Output is correct
10 Correct 105 ms 153428 KB Output is correct
11 Correct 108 ms 153068 KB Output is correct
12 Correct 121 ms 153424 KB Output is correct
13 Correct 102 ms 153516 KB Output is correct
14 Correct 246 ms 193100 KB Output is correct
15 Correct 2663 ms 286380 KB Output is correct
16 Correct 295 ms 193100 KB Output is correct
17 Correct 2383 ms 286020 KB Output is correct
18 Correct 1313 ms 283992 KB Output is correct
19 Correct 1427 ms 283904 KB Output is correct
20 Correct 2242 ms 293292 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 23 ms 150104 KB Output is correct
2 Correct 25 ms 150144 KB Output is correct
3 Correct 141 ms 153040 KB Output is correct
4 Correct 1479 ms 274500 KB Output is correct
5 Correct 1644 ms 274500 KB Output is correct
6 Correct 1779 ms 274500 KB Output is correct
7 Correct 2148 ms 275444 KB Output is correct
8 Correct 2256 ms 283044 KB Output is correct
9 Correct 1529 ms 274496 KB Output is correct
10 Correct 1557 ms 274428 KB Output is correct
11 Correct 1301 ms 274500 KB Output is correct
12 Correct 1659 ms 274464 KB Output is correct
13 Correct 1490 ms 280220 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 21 ms 150144 KB Output is correct
2 Correct 21 ms 150104 KB Output is correct
3 Correct 22 ms 150196 KB Output is correct
4 Correct 21 ms 150096 KB Output is correct
5 Correct 25 ms 150108 KB Output is correct
6 Correct 25 ms 150124 KB Output is correct
7 Correct 56 ms 150812 KB Output is correct
8 Correct 42 ms 150864 KB Output is correct
9 Correct 60 ms 150720 KB Output is correct
10 Correct 50 ms 150868 KB Output is correct
11 Correct 83 ms 150804 KB Output is correct
12 Correct 56 ms 150864 KB Output is correct
13 Correct 34 ms 150936 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 22 ms 150084 KB Output is correct
2 Correct 21 ms 150108 KB Output is correct
3 Correct 23 ms 150104 KB Output is correct
4 Correct 25 ms 150104 KB Output is correct
5 Correct 31 ms 150272 KB Output is correct
6 Correct 1359 ms 274436 KB Output is correct
7 Correct 1636 ms 274596 KB Output is correct
8 Correct 1829 ms 275520 KB Output is correct
9 Correct 2178 ms 282984 KB Output is correct
10 Correct 1525 ms 274496 KB Output is correct
11 Correct 1877 ms 282252 KB Output is correct
12 Correct 1257 ms 274500 KB Output is correct
13 Correct 1472 ms 274516 KB Output is correct
14 Correct 1654 ms 274492 KB Output is correct
15 Correct 1942 ms 275504 KB Output is correct
16 Correct 1086 ms 274496 KB Output is correct
17 Correct 1261 ms 274492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 23 ms 150036 KB Output is correct
2 Correct 21 ms 150232 KB Output is correct
3 Correct 22 ms 150108 KB Output is correct
4 Correct 20 ms 150248 KB Output is correct
5 Correct 22 ms 150108 KB Output is correct
6 Correct 264 ms 152916 KB Output is correct
7 Correct 439 ms 192048 KB Output is correct
8 Correct 1642 ms 274496 KB Output is correct
9 Correct 1547 ms 274408 KB Output is correct
10 Correct 1581 ms 274512 KB Output is correct
11 Correct 1448 ms 274492 KB Output is correct
12 Correct 1497 ms 274480 KB Output is correct
13 Correct 1310 ms 274512 KB Output is correct
14 Correct 1559 ms 274472 KB Output is correct
15 Correct 23 ms 150296 KB Output is correct
16 Correct 20 ms 150108 KB Output is correct
17 Correct 21 ms 150248 KB Output is correct
18 Correct 22 ms 150196 KB Output is correct
19 Correct 23 ms 150108 KB Output is correct
20 Correct 30 ms 150352 KB Output is correct
21 Correct 123 ms 153304 KB Output is correct
22 Correct 23 ms 150100 KB Output is correct
23 Correct 30 ms 150300 KB Output is correct
24 Correct 105 ms 153428 KB Output is correct
25 Correct 108 ms 153068 KB Output is correct
26 Correct 121 ms 153424 KB Output is correct
27 Correct 102 ms 153516 KB Output is correct
28 Correct 246 ms 193100 KB Output is correct
29 Correct 2663 ms 286380 KB Output is correct
30 Correct 295 ms 193100 KB Output is correct
31 Correct 2383 ms 286020 KB Output is correct
32 Correct 1313 ms 283992 KB Output is correct
33 Correct 1427 ms 283904 KB Output is correct
34 Correct 2242 ms 293292 KB Output is correct
35 Correct 23 ms 150104 KB Output is correct
36 Correct 25 ms 150144 KB Output is correct
37 Correct 141 ms 153040 KB Output is correct
38 Correct 1479 ms 274500 KB Output is correct
39 Correct 1644 ms 274500 KB Output is correct
40 Correct 1779 ms 274500 KB Output is correct
41 Correct 2148 ms 275444 KB Output is correct
42 Correct 2256 ms 283044 KB Output is correct
43 Correct 1529 ms 274496 KB Output is correct
44 Correct 1557 ms 274428 KB Output is correct
45 Correct 1301 ms 274500 KB Output is correct
46 Correct 1659 ms 274464 KB Output is correct
47 Correct 1490 ms 280220 KB Output is correct
48 Correct 21 ms 150144 KB Output is correct
49 Correct 21 ms 150104 KB Output is correct
50 Correct 22 ms 150196 KB Output is correct
51 Correct 21 ms 150096 KB Output is correct
52 Correct 25 ms 150108 KB Output is correct
53 Correct 25 ms 150124 KB Output is correct
54 Correct 56 ms 150812 KB Output is correct
55 Correct 42 ms 150864 KB Output is correct
56 Correct 60 ms 150720 KB Output is correct
57 Correct 50 ms 150868 KB Output is correct
58 Correct 83 ms 150804 KB Output is correct
59 Correct 56 ms 150864 KB Output is correct
60 Correct 34 ms 150936 KB Output is correct
61 Correct 220 ms 154704 KB Output is correct
62 Correct 473 ms 194308 KB Output is correct
63 Correct 2098 ms 277408 KB Output is correct
64 Correct 1484 ms 277612 KB Output is correct
65 Correct 1769 ms 277780 KB Output is correct
66 Correct 1933 ms 278928 KB Output is correct
67 Incorrect 2220 ms 286904 KB Output isn't correct
68 Halted 0 ms 0 KB -