Submission #936415

# Submission time Handle Problem Language Result Execution time Memory
936415 2024-03-01T18:57:56 Z EJIC_B_KEDAX Comparing Plants (IOI20_plants) C++17
43 / 100
2389 ms 275200 KB
#include <bits/stdc++.h>
#include "plants.h"

#define x first
#define y second

using ll = long long;
 
using namespace std;
 
const int LG = 19, N = 1 << LG;
int st1[2 * N], st2[2 * N], lz1[2 * N], lz2[2 * N], timer = 1, fndl[2 * N], fndl2[2 * N], used3[N], level[N], kk, nn;
pair<int, int> fnd[2 * N], binupl[LG][N];
pair<ll, int> binupr[LG][N], fnd2[2 * N];
vector<pair<int, int>> mst[2 * N];



void push(int i, int st[], int lz[]) {
	if (lz[i] != -1) {
		st[2 * i + 1] = lz[i];
		st[2 * i + 2] = lz[i];
		lz[2 * i + 1] = lz[i];
		lz[2 * i + 2] = lz[i];
		lz[i] = -1;
	}
}

void set_seg(int l, int r, int x, int st[], int lz[], int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		st[i] = x;
		lz[i] = x;
		return;
	}
	if (l1 > r || r1 < l) {
		return;
	}
	push(i, st, lz);
	set_seg(l, r, x, st, lz, l1, (l1 + r1) / 2, 2 * i + 1);
	set_seg(l, r, x, st, lz, (l1 + r1) / 2 + 1, r1, 2 * i + 2);
	st[i] = min(st[2 * i + 1], st[2 * i + 2]);
}

int get(int ind, int st[], int lz[], int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 == ind && r1 == ind) {
		return st[i];
	}
	if (l1 > ind || r1 < ind) {
		return INT32_MAX;
	}
	push(i, st, lz);
	return min(get(ind, st, lz, l1, (l1 + r1) / 2, 2 * i + 1), get(ind, st, lz, (l1 + r1) / 2 + 1, r1, 2 * i + 2));
}

void push(int i) {
	fnd[2 * i + 1].x += fndl[i];
	fnd[2 * i + 2].x += fndl[i];
	fndl[2 * i + 1] += fndl[i];
	fndl[2 * i + 2] += fndl[i];
	fndl[i] = 0;
}

void push1(int i) {
	fnd2[2 * i + 1].x += fndl2[i];
	fnd2[2 * i + 2].x += fndl2[i];
	fndl2[2 * i + 1] += fndl2[i];
	fndl2[2 * i + 2] += fndl2[i];
	fndl2[i] = 0;
}

void add_seg(int l, int r, int x, int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		fnd[i].x += x;
		fndl[i] += x;
		return;
	}
	if (l1 > r || r1 < l) {
		return;
	}
	push(i);
	add_seg(l, r, x, l1, (l1 + r1) / 2, 2 * i + 1);
	add_seg(l, r, x, (l1 + r1) / 2 + 1, r1, 2 * i + 2);
	fnd[i] = min(fnd[2 * i + 1], fnd[2 * i + 2]);
}

pair<int, int> get_min(int l, int r, int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		return fnd[i];
	}
	if (l1 > r || r1 < l) {
		return {INT32_MAX, -1};
	}
	push(i);
	return min(get_min(l, r, l1, (l1 + r1) / 2, 2 * i + 1), get_min(l, r, (l1 + r1) / 2 + 1, r1, 2 * i + 2));
}

void add_seg1(int l, int r, int x, int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		fnd2[i].x += x;
		fndl2[i] += x;
		return;
	}
	if (l1 > r || r1 < l) {
		return;
	}
	push1(i);
	add_seg1(l, r, x, l1, (l1 + r1) / 2, 2 * i + 1);
	add_seg1(l, r, x, (l1 + r1) / 2 + 1, r1, 2 * i + 2);
	fnd2[i] = min(fnd2[2 * i + 1], fnd2[2 * i + 2]);
}

pair<int, int> get_min1(int l, int r, int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		return fnd2[i];
	}
	if (l1 > r || r1 < l) {
		return {INT32_MAX, -1};
	}
	push1(i);
	return min(get_min1(l, r, l1, (l1 + r1) / 2, 2 * i + 1), get_min1(l, r, (l1 + r1) / 2 + 1, r1, 2 * i + 2));
}

pair<int, int> find_max(int i, int v) {
	int l = -1, r = mst[i].size();
	while (r - l > 1) {
		int m = (r + l) / 2;
		if (mst[i][m].x >= v) {
			r = m;
		} else {
			l = m;
		}
	}
	return l == -1 ? make_pair(-1, N) : mst[i][l];
}

pair<int, int> get_max(int l, int r, int v) {
	l += N - 1;
	r += N - 1;
	pair<int, int> res = {-1, -1};
	while (l <= r) {
		if (~l & 1) {
			res = max(res, find_max(l++, v));
		}
		if (r & 1) {
			res = max(res, find_max(r--, v));
		}
		l = (l - 1) / 2;
		r = (r - 1) / 2;
	}
	return res;
}

void mrg(int to, int a, int b) {
	mst[to].resize(mst[a].size() + mst[b].size());
	std::merge(mst[a].begin(), mst[a].end(), mst[b].begin(), mst[b].end(), mst[to].begin());
}

void init(int k, vector<int> r) {
	kk = k;
    int n = r.size();
    nn = n;
    int ok = 0;
    for (int i = 0; i < 2 * N; i++) {
    	st1[i] = -1;
    	st2[i] = -1;
    	lz1[i] = -1;
    	lz2[i] = -1;
    }
    for (int i = 0; i < N; i++) {
    	fnd[i + N - 1].y = i;
    	fnd2[i + N - 1].y = i;
    	level[i] = n;
    }
    for (int i = 0; i < n; i++) {
    	add_seg(i, i, r[i]);
    	add_seg1(i, i, r[i]);
		if (r[i] == 0) {
			used3[i] = 1;
			if (i + k > n) {
				add_seg(i + 1, n - 1, 1);
				add_seg(0, i + k - n - 1, 1);
			} else {
				add_seg(i + 1, i + k - 1, 1);
			}
		}
    }
    while (ok < n) {
    	auto [value, i] = get_min(0, n - 1);
    	// cout << i << '\n';
    	// for (int i = 0; i < n; i++) {
    	// 	cout << get_min(i, i).x << ' ';
    	// }
    	// cout << '\n';
    	if (value) {
    		// cout << value << ' ' << ok << '\n';
    		exit(1);
    	}
    	int tmp1 = get(i, st1, lz1), tmp2 = get(i, st2, lz2);
    	if (tmp1 != -1) {
    		level[i] = min(level[i], level[tmp1] - 1);
    	}
    	if (tmp2 != -1) {
    		level[i] = min(level[i], level[tmp2] - 1);
    	}
    	vector<int> z;
        if (i + k - 1 < n) {
    		set_seg(i + 1, i + k - 1, i, st2, lz2);
    		add_seg(i + 1, i + k - 1, -1);
    	} else {
    		set_seg(i + 1, n - 1, i, st2, lz2);
    		set_seg(0, i + k - 1 - n, i, st2, lz2);
    		add_seg(i + 1, n - 1, -1);
    		add_seg(0, i + k - 1 - n, -1);
    	}
    	if (i >= k - 1) {
    		add_seg(i - k + 1, i - 1, -1);
    		add_seg1(i - k + 1, i - 1, -1);
    		int left = i - k + 1;
    		while (left <= i - 1 && !get_min1(left, i - 1).x) {
    			z.push_back(get_min1(left, i - 1).y);
    			assert(left <= z.back());
    			left = z.back() + 1;
    		}
    		set_seg(i - k + 1, i - 1, i, st1, lz1);
    	} else {
    		add_seg(0, i - 1, -1);
    		add_seg1(0, i - 1, -1);
    		set_seg(0, i - 1, i, st1, lz1);
    		add_seg(n + 1 - k + i, n - 1, -1);
    		add_seg1(n + 1 - k + i, n - 1, -1);
    		set_seg(n + 1 - k + i, n - 1, i, st1, lz1);
    		int left = 0;
    		while (left <= i - 1 && !get_min1(left, i - 1).x) {
    			z.push_back(get_min1(left, i - 1).y);
    			assert(left <= z.back());
    			left = z.back() + 1;
    		}
    		left = n + 1 - k + i;
    		while (left <= n - 1 && !get_min1(left, n - 1).x) {
    			z.push_back(get_min1(left, n - 1).y);
    			assert(left <= z.back());
    			left = z.back() + 1;
    		}
    	}
    	for (int j : z) {
    		if (!used3[j]) {
				if (j + k > n) {
					add_seg(j + 1, n - 1, 1);
					add_seg(0, j + k - n - 1, 1);
				} else {
					add_seg(j + 1, j + k - 1, 1);
				}
				used3[j] = 1;
			}
		}
        add_seg(i, i, INT32_MAX / 2);
        add_seg1(i, i, INT32_MAX / 2);
    	ok++;
    }
    // for (int i = 0; i < n; i++) {
    // 	cout << level[i] << ' ';
    // }
    // cout << '\n';
    // for (int i = 0; i < n; i++) {
    // 	mst[N - 1 + i].emplace_back(level[i], i);
    // }
    // for (int i = N - 2; i >= 0; i--) {
    // 	mrg(i, 2 * i + 1, 2 * i + 2);
    // }
    set<pair<int, int>> st1;
    set<pair<int, int>> st2;
    for (int i = n - k + 1; i < n; i++) {
    	st1.emplace(-level[i], i);
    }
    for (int i = 1; i < k; i++) {
    	st2.emplace(-level[i], i);
    }
    for (int i = 0; i < n; i++) {
    	auto lb1 = st1.lower_bound({-level[i], N});
    	if (lb1 == st1.end()) {
    		binupl[0][i].x = i;
    	} else {
    		binupl[0][i].x = (*lb1).y;
    	}
    	st1.erase({-level[(i - k + 1 + n) % n], (i - k + 1 + n) % n});
    	st1.emplace(-level[i], i);
    	// if (i >= k - 1) {
    	// 	binupl[0][i].x = get_max(i - k + 1, i - 1, level[i]).y;
    	// } else {
    	// 	binupl[0][i].x = max(get_max(0, i - 1, level[i]), get_max(n + i - k + 1, n - 1, level[i])).y;
    	// }
    	// if (binupl[0][i].x == N) {
    	// 	binupl[0][i].x = i;
    	// }
    	binupl[0][i].y = i - binupl[0][i].x;
    	if (binupl[0][i].y < 0) {
    		binupl[0][i].y += n;
    	}
    	auto lb2 = st2.lower_bound({-level[i], N});
    	if (lb2 == st2.end()) {
    		binupr[0][i].x = i;
    	} else {
    		binupr[0][i].x = (*lb2).y;
    	}
    	st2.erase({-level[i + 1], i + 1});
    	st2.emplace(-level[(i + k) % n], (i + k) % n);
    	// if (i + k - 1 < n) {
    	// 	binupr[0][i].x = get_max(i + 1, i + k - 1, level[i]).y;
    	// } else {
    	// 	binupr[0][i].x = max(get_max(i + 1, n - 1, level[i]), get_max(0, i + k - 1 - n, level[i])).y;
    	// }
    	// if (binupr[0][i].x == N) {
    	// 	binupr[0][i].x = i;
    	// }
    	binupr[0][i].y = binupr[0][i].x - i;
    	if (binupr[0][i].y < 0) {
    		binupr[0][i].y += n;
    	}
    }
    for (int l = 1; l < LG; l++) {
    	for (int i = 0; i < n; i++) {
    		binupl[l][i].x = binupl[l - 1][binupl[l - 1][i].x].x;
    		binupr[l][i].x = binupr[l - 1][binupr[l - 1][i].x].x;
    		binupl[l][i].y = binupl[l - 1][binupl[l - 1][i].x].y + binupl[l - 1][i].y;
    		binupr[l][i].y = binupr[l - 1][binupr[l - 1][i].x].y + binupr[l - 1][i].y;
    	}
    }
}

bool try_compare(int x, int y) {
	int dist = x - y, nw = x;
	if (dist < 0) {
		dist += nn;
	}
	dist -= kk - 1;
	if (level[nw] > level[y] && dist <= 0) {
		// cout << "! " << nw << '\n';
		return true;
	}
	for (int i = LG - 1; i >= 0; i--) {
		if (binupl[i][nw].y < dist) {
			dist -= binupl[i][nw].y;
			nw = binupl[i][nw].x;
		}
	}
	dist -= binupl[0][nw].y;
	nw = binupl[0][nw].x;
	if (level[nw] > level[y] && dist <= 0) {
		// cout << "!! " << nw << '\n';
		return true;
	}
	dist = y - x, nw = x;
	if (dist < 0) {
		dist += nn;
	}
	dist -= kk - 1;
	if (level[nw] > level[y] && dist <= 0) {
		// cout << "!!! " << nw << '\n';
		return true;
	}
	for (int i = LG - 1; i >= 0; i--) {
		if (binupr[i][nw].y < dist) {
			dist -= binupr[i][nw].y;
			nw = binupr[i][nw].x;
		}
	}
	dist -= binupr[0][nw].y;
	nw = binupr[0][nw].x;
	if (level[nw] > level[y] && dist <= 0) {
		// cout << "!!!! " << nw << '\n';
		return true;
	}
	return false;
}
 
int compare_plants(int x, int y) {
	if (try_compare(x, y) && level[x] > level[y]) {
		return 1;
	}
	if (try_compare(y, x) && level[y] > level[x]) {
		return -1;
	}
	// if (level[x] > level[y]) {
	// 	return 1;
	// }
	// if (level[y] > level[x]) {
	// 	return -1;
	// }
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 48 ms 150248 KB Output is correct
2 Correct 22 ms 150272 KB Output is correct
3 Correct 24 ms 150108 KB Output is correct
4 Correct 24 ms 150108 KB Output is correct
5 Correct 22 ms 150108 KB Output is correct
6 Correct 153 ms 153100 KB Output is correct
7 Correct 386 ms 192152 KB Output is correct
8 Correct 1558 ms 235628 KB Output is correct
9 Correct 1462 ms 237632 KB Output is correct
10 Correct 1422 ms 239300 KB Output is correct
11 Correct 1447 ms 235744 KB Output is correct
12 Correct 1391 ms 235632 KB Output is correct
13 Correct 1182 ms 235580 KB Output is correct
14 Correct 1395 ms 252224 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 22 ms 150096 KB Output is correct
2 Correct 23 ms 150276 KB Output is correct
3 Correct 22 ms 150152 KB Output is correct
4 Correct 21 ms 150180 KB Output is correct
5 Correct 21 ms 150100 KB Output is correct
6 Correct 31 ms 150448 KB Output is correct
7 Correct 153 ms 154708 KB Output is correct
8 Correct 25 ms 150360 KB Output is correct
9 Correct 30 ms 150364 KB Output is correct
10 Correct 166 ms 154708 KB Output is correct
11 Correct 107 ms 154444 KB Output is correct
12 Correct 261 ms 154580 KB Output is correct
13 Correct 144 ms 154676 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 22 ms 150096 KB Output is correct
2 Correct 23 ms 150276 KB Output is correct
3 Correct 22 ms 150152 KB Output is correct
4 Correct 21 ms 150180 KB Output is correct
5 Correct 21 ms 150100 KB Output is correct
6 Correct 31 ms 150448 KB Output is correct
7 Correct 153 ms 154708 KB Output is correct
8 Correct 25 ms 150360 KB Output is correct
9 Correct 30 ms 150364 KB Output is correct
10 Correct 166 ms 154708 KB Output is correct
11 Correct 107 ms 154444 KB Output is correct
12 Correct 261 ms 154580 KB Output is correct
13 Correct 144 ms 154676 KB Output is correct
14 Correct 309 ms 194640 KB Output is correct
15 Correct 2377 ms 268188 KB Output is correct
16 Correct 305 ms 194604 KB Output is correct
17 Correct 2389 ms 264540 KB Output is correct
18 Correct 1325 ms 262216 KB Output is correct
19 Correct 1593 ms 264332 KB Output is correct
20 Correct 2280 ms 275200 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 23 ms 150104 KB Output is correct
2 Correct 23 ms 150096 KB Output is correct
3 Correct 190 ms 154188 KB Output is correct
4 Correct 1438 ms 254288 KB Output is correct
5 Correct 1665 ms 253248 KB Output is correct
6 Correct 1813 ms 253248 KB Output is correct
7 Correct 2045 ms 255556 KB Output is correct
8 Incorrect 2250 ms 265028 KB Output isn't correct
9 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 22 ms 150108 KB Output is correct
2 Correct 21 ms 150268 KB Output is correct
3 Correct 21 ms 150096 KB Output is correct
4 Correct 22 ms 150096 KB Output is correct
5 Correct 22 ms 150108 KB Output is correct
6 Correct 25 ms 150356 KB Output is correct
7 Correct 56 ms 151056 KB Output is correct
8 Correct 43 ms 151008 KB Output is correct
9 Correct 47 ms 150992 KB Output is correct
10 Correct 41 ms 151120 KB Output is correct
11 Correct 49 ms 151012 KB Output is correct
12 Correct 50 ms 151124 KB Output is correct
13 Correct 41 ms 151256 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 21 ms 150108 KB Output is correct
2 Correct 21 ms 150112 KB Output is correct
3 Correct 22 ms 150108 KB Output is correct
4 Correct 21 ms 150080 KB Output is correct
5 Correct 31 ms 150152 KB Output is correct
6 Correct 1326 ms 252224 KB Output is correct
7 Correct 1567 ms 252480 KB Output is correct
8 Correct 1825 ms 253760 KB Output is correct
9 Incorrect 2257 ms 263096 KB Output isn't correct
10 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 48 ms 150248 KB Output is correct
2 Correct 22 ms 150272 KB Output is correct
3 Correct 24 ms 150108 KB Output is correct
4 Correct 24 ms 150108 KB Output is correct
5 Correct 22 ms 150108 KB Output is correct
6 Correct 153 ms 153100 KB Output is correct
7 Correct 386 ms 192152 KB Output is correct
8 Correct 1558 ms 235628 KB Output is correct
9 Correct 1462 ms 237632 KB Output is correct
10 Correct 1422 ms 239300 KB Output is correct
11 Correct 1447 ms 235744 KB Output is correct
12 Correct 1391 ms 235632 KB Output is correct
13 Correct 1182 ms 235580 KB Output is correct
14 Correct 1395 ms 252224 KB Output is correct
15 Correct 22 ms 150096 KB Output is correct
16 Correct 23 ms 150276 KB Output is correct
17 Correct 22 ms 150152 KB Output is correct
18 Correct 21 ms 150180 KB Output is correct
19 Correct 21 ms 150100 KB Output is correct
20 Correct 31 ms 150448 KB Output is correct
21 Correct 153 ms 154708 KB Output is correct
22 Correct 25 ms 150360 KB Output is correct
23 Correct 30 ms 150364 KB Output is correct
24 Correct 166 ms 154708 KB Output is correct
25 Correct 107 ms 154444 KB Output is correct
26 Correct 261 ms 154580 KB Output is correct
27 Correct 144 ms 154676 KB Output is correct
28 Correct 309 ms 194640 KB Output is correct
29 Correct 2377 ms 268188 KB Output is correct
30 Correct 305 ms 194604 KB Output is correct
31 Correct 2389 ms 264540 KB Output is correct
32 Correct 1325 ms 262216 KB Output is correct
33 Correct 1593 ms 264332 KB Output is correct
34 Correct 2280 ms 275200 KB Output is correct
35 Correct 23 ms 150104 KB Output is correct
36 Correct 23 ms 150096 KB Output is correct
37 Correct 190 ms 154188 KB Output is correct
38 Correct 1438 ms 254288 KB Output is correct
39 Correct 1665 ms 253248 KB Output is correct
40 Correct 1813 ms 253248 KB Output is correct
41 Correct 2045 ms 255556 KB Output is correct
42 Incorrect 2250 ms 265028 KB Output isn't correct
43 Halted 0 ms 0 KB -