Submission #936301

# Submission time Handle Problem Language Result Execution time Memory
936301 2024-03-01T14:24:30 Z EJIC_B_KEDAX Comparing Plants (IOI20_plants) C++17
19 / 100
4000 ms 148408 KB
#include <bits/stdc++.h>
#include "plants.h"

#define x first
#define y second

using ll = long long;
 
using namespace std;
 
const int LG = 18, N = 1 << LG;
int st1[2 * N], st2[2 * N], lz1[2 * N], lz2[2 * N], timer = 1, fndl[2 * N], used3[N], level[N], kk, nn;
pair<int, int> fnd[2 * N], binupl[LG][N], binupr[LG][N];
vector<pair<int, int>> mst[2 * N];

void push(int i, int st[], int lz[]) {
	if (lz[i] != -1) {
		st[2 * i + 1] = lz[i];
		st[2 * i + 2] = lz[i];
		lz[2 * i + 1] = lz[i];
		lz[2 * i + 2] = lz[i];
		lz[i] = -1;
	}
}

void set_seg(int l, int r, int x, int st[], int lz[], int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		st[i] = x;
		lz[i] = x;
		return;
	}
	if (l1 > r || r1 < l) {
		return;
	}
	push(i, st, lz);
	set_seg(l, r, x, st, lz, l1, (l1 + r1) / 2, 2 * i + 1);
	set_seg(l, r, x, st, lz, (l1 + r1) / 2 + 1, r1, 2 * i + 2);
	st[i] = min(st[2 * i + 1], st[2 * i + 2]);
}

int get(int ind, int st[], int lz[], int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 == ind && r1 == ind) {
		return st[i];
	}
	if (l1 > ind || r1 < ind) {
		return INT32_MAX;
	}
	push(i, st, lz);
	return min(get(ind, st, lz, l1, (l1 + r1) / 2, 2 * i + 1), get(ind, st, lz, (l1 + r1) / 2 + 1, r1, 2 * i + 2));
}

void push(int i) {
	fnd[2 * i + 1].x += fndl[i];
	fnd[2 * i + 2].x += fndl[i];
	fndl[2 * i + 1] += fndl[i];
	fndl[2 * i + 2] += fndl[i];
	fndl[i] = 0;
}

void add_seg(int l, int r, int x, int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		fnd[i].x += x;
		fndl[i] += x;
		return;
	}
	if (l1 > r || r1 < l) {
		return;
	}
	push(i);
	add_seg(l, r, x, l1, (l1 + r1) / 2, 2 * i + 1);
	add_seg(l, r, x, (l1 + r1) / 2 + 1, r1, 2 * i + 2);
	fnd[i] = min(fnd[2 * i + 1], fnd[2 * i + 2]);
}

pair<int, int> get_min(int l, int r, int l1 = 0, int r1 = N - 1, int i = 0) {
	if (l1 >= l && r1 <= r) {
		return fnd[i];
	}
	if (l1 > r || r1 < l) {
		return {INT32_MAX, -1};
	}
	push(i);
	return min(get_min(l, r, l1, (l1 + r1) / 2, 2 * i + 1), get_min(l, r, (l1 + r1) / 2 + 1, r1, 2 * i + 2));
}

pair<int, int> find_max(int i, int v) {
	int l = -1, r = mst[i].size();
	while (r - l > 1) {
		int m = (r + l) / 2;
		if (mst[i][m].x >= v) {
			r = m;
		} else {
			l = m;
		}
	}
	return l == -1 ? make_pair(-1, N) : mst[i][l];
}

pair<int, int> get_max(int l, int r, int v) {
	l += N - 1;
	r += N - 1;
	pair<int, int> res = {-1, -1};
	while (l <= r) {
		if (~l & 1) {
			res = max(res, find_max(l++, v));
		}
		if (r & 1) {
			res = max(res, find_max(r--, v));
		}
		l = (l - 1) / 2;
		r = (r - 1) / 2;
	}
	return res;
}

void mrg(int to, int a, int b) {
	mst[to].resize(mst[a].size() + mst[b].size());
	std::merge(mst[a].begin(), mst[a].end(), mst[b].begin(), mst[b].end(), mst[to].begin());
}

void init(int k, vector<int> r) {
	kk = k;
    int n = r.size();
    nn = n;
    int ok = 0;
    for (int i = 0; i < 2 * N; i++) {
    	st1[i] = -1;
    	st2[i] = -1;
    	lz1[i] = -1;
    	lz2[i] = -1;
    }
    for (int i = 0; i < N; i++) {
    	fnd[i + N - 1].y = i;
    	level[i] = n;
    }
    for (int i = 0; i < n; i++) {
    	add_seg(i, i, r[i]);
		if (r[i] == 0) {
			used3[i] = 1;
			if (i + k > n) {
				add_seg(i + 1, n - 1, 1);
				add_seg(0, i + k - n - 1, 1);
			} else {
				add_seg(i + 1, i + k - 1, 1);
			}
		}
    }
    while (ok < n) {
    	auto [value, i] = get_min(0, n - 1);
    	if (value) {
    		exit(1);
    	}
    	int tmp1 = get(i, st1, lz1), tmp2 = get(i, st2, lz2);
    	if (tmp1 != -1) {
    		level[i] = min(level[i], level[tmp1] - 1);
    	}
    	if (tmp2 != -1) {
    		level[i] = min(level[i], level[tmp2] - 1);
    	}
    	vector<int> z;
        if (i + k - 1 < n) {
    		set_seg(i + 1, i + k - 1, i, st2, lz2);
    		add_seg(i + 1, i + k - 1, -1);
    	} else {
    		set_seg(i + 1, n - 1, i, st2, lz2);
    		set_seg(0, i + k - 1 - n, i, st2, lz2);
    		add_seg(i + 1, n - 1, -1);
    		add_seg(0, i + k - 1 - n, -1);
    	}
    	if (i >= k - 1) {
    		add_seg(i - k + 1, i - 1, -1);
    		int left = i - k + 1;
    		while (left <= i - 1 && !get_min(left, i - 1).x) {
    			z.push_back(get_min(left, i - 1).y);
    			assert(left <= z.back());
    			left = z.back() + 1;
    		}
    		set_seg(i - k + 1, i - 1, i, st1, lz1);
    	} else {
    		add_seg(0, i - 1, -1);
    		set_seg(0, i - 1, i, st1, lz1);
    		add_seg(n + 1 - k + i, n - 1, -1);
    		set_seg(n + 1 - k + i, n - 1, i, st1, lz1);
    		int left = 0;
    		while (left <= i - 1 && !get_min(left, i - 1).x) {
    			z.push_back(get_min(left, i - 1).y);
    			assert(left <= z.back());
    			left = z.back() + 1;
    		}
    		left = n + 1 - k + i;
    		while (left <= n - 1 && !get_min(left, n - 1).x) {
    			z.push_back(get_min(left, n - 1).y);
    			assert(left <= z.back());
    			left = z.back() + 1;
    		}
    	}
    	if (i + k - 1 < n) {
    		int left = i + 1;
    		while (left <= i + k - 1 && !get_min(left, i + k - 1).x) {
    			z.push_back(get_min(left, i + k - 1).y);
    			assert(left <= z.back());
    			left = z.back() + 1;
    		}
    	} else {
    		int left = i + 1;
    		while (left <= n - 1 && !get_min(left, n - 1).x) {
    			z.push_back(get_min(left, n - 1).y);
    			assert(left <= z.back());
    			left = z.back() + 1;
    		}
    		left = 0;
    		while (left <= i + k - 1 - n && !get_min(left, i + k - 1 - n).x) {
    			z.push_back(get_min(left, i + k - 1 - n).y);
    			assert(left <= z.back());
    			left = z.back() + 1;
    		}
    	}
    	for (int j : z) {
    		if (!used3[j]) {
				if (j + k > n) {
					add_seg(j + 1, n - 1, 1);
					add_seg(0, j + k - n - 1, 1);
				} else {
					add_seg(j + 1, j + k - 1, 1);
				}
				used3[j] = 1;
			}
		}
        add_seg(i, i, INT32_MAX / 2);
    	ok++;
    }
    for (int i = 0; i < n; i++) {
    	mst[N - 1 + i].emplace_back(level[i], i);
    }
    for (int i = N - 2; i >= 0; i--) {
    	mrg(i, 2 * i + 1, 2 * i + 2);
    }
    for (int i = 0; i < n; i++) {
    	if (i >= k - 1) {
    		binupl[0][i].x = get_max(i - k + 1, i - 1, level[i]).y;
    	} else {
    		binupl[0][i].x = max(get_max(0, i - 1, level[i]), get_max(n + i - k + 1, n - 1, level[i])).y;
    	}
    	if (binupl[0][i].x == N) {
    		binupl[0][i].x = i;
    	}
    	binupl[0][i].y = i - binupl[0][i].x;
    	if (binupl[0][i].y < 0) {
    		binupl[0][i].y += n;
    	}
    	if (i + k - 1 < n) {
    		binupr[0][i].x = get_max(i + 1, i + k - 1, level[i]).y;
    	} else {
    		binupr[0][i].x = max(get_max(i + 1, n - 1, level[i]), get_max(0, i + k - 1 - n, level[i])).y;
    	}
    	if (binupr[0][i].x == N) {
    		binupr[0][i].x = i;
    	}
    	binupr[0][i].y = binupr[0][i].x - i;
    	if (binupr[0][i].y < 0) {
    		binupr[0][i].y += n;
    	}
    }
    for (int l = 1; l < LG; l++) {
    	for (int i = 0; i < n; i++) {
    		binupl[l][i].x = binupl[l - 1][binupl[l - 1][i].x].x;
    		binupr[l][i].x = binupr[l - 1][binupr[l - 1][i].x].x;
    		binupl[l][i].y = binupl[l - 1][binupl[l - 1][i].x].y + binupl[l - 1][i].y;
    		binupr[l][i].y = binupr[l - 1][binupr[l - 1][i].x].y + binupr[l - 1][i].y;
    	}
    }
    // for (int i = 0; i < n; i++) {
    // 	cout << level[i] << ' ';
    // }
    // cout << '\n';
    // for (int i = 0; i < n; i++) {
    // 	cout << binupl[0][i].x << ' ';
    // }
    // cout << '\n';
    // for (int i = 0; i < n; i++) {
    // 	cout << binupr[0][i].x << ' ';
    // }
    // cout << '\n';
    // for (int i = 0; i < n; i++) {
    // 	cout << binupl[1][i].x << ' ';
    // }
    // cout << '\n';
    // for (int i = 0; i < n; i++) {
    // 	cout << binupr[1][i].x << ' ';
    // }
    // cout << '\n';
    // cout << '\n';
    // for (int i = 0; i < n; i++) {
    // 	cout << binupl[0][i].y << ' ';
    // }
    // cout << '\n';
    // for (int i = 0; i < n; i++) {
    // 	cout << binupr[0][i].y << ' ';
    // }
    // cout << '\n';
    // for (int i = 0; i < n; i++) {
    // 	cout << binupl[1][i].y << ' ';
    // }
    // cout << '\n';
    // for (int i = 0; i < n; i++) {
    // 	cout << binupr[1][i].y << ' ';
    // }
    // cout << '\n';
}

bool try_compare(int x, int y) {
	int dist = x - y, nw = x;
	if (dist < 0) {
		dist += nn;
	}
	dist -= kk - 1;
	if (level[nw] > level[y] && dist <= 0) {
		// cout << "! " << nw << '\n';
		return true;
	}
	for (int i = LG - 1; i >= 0; i--) {
		if (binupl[i][nw].y < dist) {
			dist -= binupl[i][nw].y;
			nw = binupl[i][nw].x;
		}
	}
	dist -= binupl[0][nw].y;
	nw = binupl[0][nw].x;
	if (level[nw] > level[y] && dist <= 0) {
		// cout << "!! " << nw << '\n';
		return true;
	}
	dist = y - x, nw = x;
	if (dist < 0) {
		dist += nn;
	}
	dist -= kk - 1;
	if (level[nw] > level[y] && dist <= 0) {
		// cout << "!!! " << nw << '\n';
		return true;
	}
	for (int i = LG - 1; i >= 0; i--) {
		if (binupr[i][nw].y < dist) {
			dist -= binupr[i][nw].y;
			nw = binupr[i][nw].x;
		}
	}
	dist -= binupr[0][nw].y;
	nw = binupr[0][nw].x;
	if (level[nw] > level[y] && dist <= 0) {
		// cout << "!!!! " << nw << '\n';
		return true;
	}
	return false;
}
 
int compare_plants(int x, int y) {
	if (try_compare(x, y) && level[x] > level[y]) {
		return 1;
	}
	if (try_compare(y, x) && level[y] > level[x]) {
		return -1;
	}
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 18 ms 103000 KB Output is correct
2 Correct 15 ms 103004 KB Output is correct
3 Correct 18 ms 103004 KB Output is correct
4 Correct 16 ms 103000 KB Output is correct
5 Correct 16 ms 102976 KB Output is correct
6 Correct 184 ms 106876 KB Output is correct
7 Correct 388 ms 111696 KB Output is correct
8 Correct 1258 ms 147536 KB Output is correct
9 Correct 1288 ms 147352 KB Output is correct
10 Correct 1183 ms 147356 KB Output is correct
11 Correct 1151 ms 147536 KB Output is correct
12 Correct 1166 ms 147400 KB Output is correct
13 Correct 1067 ms 147284 KB Output is correct
14 Correct 1220 ms 147380 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 103000 KB Output is correct
2 Correct 16 ms 103004 KB Output is correct
3 Correct 15 ms 102928 KB Output is correct
4 Correct 16 ms 103032 KB Output is correct
5 Correct 16 ms 103004 KB Output is correct
6 Correct 23 ms 103228 KB Output is correct
7 Correct 157 ms 108628 KB Output is correct
8 Correct 19 ms 103000 KB Output is correct
9 Correct 24 ms 103252 KB Output is correct
10 Correct 202 ms 108508 KB Output is correct
11 Correct 102 ms 108600 KB Output is correct
12 Correct 202 ms 108760 KB Output is correct
13 Correct 139 ms 108628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 103000 KB Output is correct
2 Correct 16 ms 103004 KB Output is correct
3 Correct 15 ms 102928 KB Output is correct
4 Correct 16 ms 103032 KB Output is correct
5 Correct 16 ms 103004 KB Output is correct
6 Correct 23 ms 103228 KB Output is correct
7 Correct 157 ms 108628 KB Output is correct
8 Correct 19 ms 103000 KB Output is correct
9 Correct 24 ms 103252 KB Output is correct
10 Correct 202 ms 108508 KB Output is correct
11 Correct 102 ms 108600 KB Output is correct
12 Correct 202 ms 108760 KB Output is correct
13 Correct 139 ms 108628 KB Output is correct
14 Correct 295 ms 111780 KB Output is correct
15 Correct 2307 ms 148196 KB Output is correct
16 Correct 291 ms 111956 KB Output is correct
17 Correct 2242 ms 148156 KB Output is correct
18 Correct 1479 ms 147780 KB Output is correct
19 Correct 1600 ms 148408 KB Output is correct
20 Execution timed out 4014 ms 82644 KB Time limit exceeded
21 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 17 ms 103004 KB Output is correct
2 Runtime error 7 ms 31068 KB Execution failed because the return code was nonzero
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 16 ms 102932 KB Output is correct
2 Correct 15 ms 103004 KB Output is correct
3 Correct 16 ms 103000 KB Output is correct
4 Correct 16 ms 103004 KB Output is correct
5 Runtime error 7 ms 31068 KB Execution failed because the return code was nonzero
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 16 ms 103000 KB Output is correct
2 Correct 16 ms 103004 KB Output is correct
3 Correct 17 ms 103004 KB Output is correct
4 Correct 17 ms 103004 KB Output is correct
5 Runtime error 8 ms 31068 KB Execution failed because the return code was nonzero
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 18 ms 103000 KB Output is correct
2 Correct 15 ms 103004 KB Output is correct
3 Correct 18 ms 103004 KB Output is correct
4 Correct 16 ms 103000 KB Output is correct
5 Correct 16 ms 102976 KB Output is correct
6 Correct 184 ms 106876 KB Output is correct
7 Correct 388 ms 111696 KB Output is correct
8 Correct 1258 ms 147536 KB Output is correct
9 Correct 1288 ms 147352 KB Output is correct
10 Correct 1183 ms 147356 KB Output is correct
11 Correct 1151 ms 147536 KB Output is correct
12 Correct 1166 ms 147400 KB Output is correct
13 Correct 1067 ms 147284 KB Output is correct
14 Correct 1220 ms 147380 KB Output is correct
15 Correct 15 ms 103000 KB Output is correct
16 Correct 16 ms 103004 KB Output is correct
17 Correct 15 ms 102928 KB Output is correct
18 Correct 16 ms 103032 KB Output is correct
19 Correct 16 ms 103004 KB Output is correct
20 Correct 23 ms 103228 KB Output is correct
21 Correct 157 ms 108628 KB Output is correct
22 Correct 19 ms 103000 KB Output is correct
23 Correct 24 ms 103252 KB Output is correct
24 Correct 202 ms 108508 KB Output is correct
25 Correct 102 ms 108600 KB Output is correct
26 Correct 202 ms 108760 KB Output is correct
27 Correct 139 ms 108628 KB Output is correct
28 Correct 295 ms 111780 KB Output is correct
29 Correct 2307 ms 148196 KB Output is correct
30 Correct 291 ms 111956 KB Output is correct
31 Correct 2242 ms 148156 KB Output is correct
32 Correct 1479 ms 147780 KB Output is correct
33 Correct 1600 ms 148408 KB Output is correct
34 Execution timed out 4014 ms 82644 KB Time limit exceeded
35 Halted 0 ms 0 KB -