Submission #934281

# Submission time Handle Problem Language Result Execution time Memory
934281 2024-02-27T05:47:26 Z tfgs Robot (JOI21_ho_t4) C++17
100 / 100
826 ms 90880 KB
#include <bits/stdc++.h>
using namespace std;

using ll = long long;
using db = long double; // or double, if TL is tight
using str = string; // yay python! 

// pairs
using pi = pair<int,int>;
using pl = pair<ll,ll>;
using pd = pair<db,db>;
#define mp make_pair
#define f first
#define s second

#define tcT template<class T
#define tcTU tcT, class U
// ^ lol this makes everything look weird but I'll try it
tcT> using V = vector<T>; 
tcT, size_t SZ> using AR = array<T,SZ>; 
using vi = V<int>;
using vb = V<bool>;
using vl = V<ll>;
using vd = V<db>;
using vs = V<str>;
using vpi = V<pi>;
using vpl = V<pl>;
using vpd = V<pd>;

// vectors
// oops size(x), rbegin(x), rend(x) need C++17
#define sz(x) ll((x).size())
#define bg(x) begin(x)
#define all(x) bg(x), end(x)
#define rall(x) x.rbegin(), x.rend() 
#define sor(x) sort(all(x)) 
#define rsz resize
#define ins insert 
#define pb push_back
#define eb emplace_back
#define ft front()
#define bk back()

#define lb lower_bound
#define ub upper_bound
tcT> ll lwb(V<T>& a, const T& b) { return ll(lb(all(a),b)-bg(a)); }
tcT> ll upb(V<T>& a, const T& b) { return ll(ub(all(a),b)-bg(a)); }

// loops
#define FOR(i,a,b) for (ll i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define F1R(i,a) FOR(i,1,a+1)
#define ROF(i,a,b) for (ll i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define R1F(i,a) ROF(i,1,a+1)
#define rep(a) F0R(_,a)
#define each(a,x) for (auto& a: x)

const ll P = 1e9+7; // 998244353;
const ll MX = 2e5+5;
const ll BIG = 1e18; // not too close to LLONG_MAX
const db PI = acos((db)-1);
const ll dx[4]{1,0,-1,0}, dy[4]{0,1,0,-1}; // for every grid problem!!
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); 
template<class T> using pqg = priority_queue<T,vector<T>,greater<T>>;

ll pw(ll a, ll b) {
    ll res = 1;
    while (b) {
        if (b & 1) res = res * a % P;
        b >>= 1;
        a = a * a % P;
    }

    return res;
}

// bitwise ops
// also see https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
constexpr ll pct(ll x) { return __builtin_popcount(x); } // # of bits set
constexpr ll bits(ll x) { // assert(x >= 0); // make C++11 compatible until USACO updates ...
    return x == 0 ? 0 : 31-__builtin_clz(x); } // floor(log2(x)) 
constexpr ll p2(ll x) { return 1<<x; }
constexpr ll msk2(ll x) { return p2(x)-1; }

ll cdiv(ll a, ll b) { return a/b+((a^b)>0&&a%b); } // divide a by b rounded up
ll fdiv(ll a, ll b) { return a/b-((a^b)<0&&a%b); } // divide a by b rounded down

tcT> bool ckmin(T& a, const T& b) {
    return b < a ? a = b, 1 : 0; } // set a = min(a,b)
tcT> bool ckmax(T& a, const T& b) {
    return a < b ? a = b, 1 : 0; } // set a = max(a,b)
// m is max, M is second max
tcT> T tmax(T x, T& m, T& M) {
    if (x <= m) return ckmax(M, x);
    return ckmax(m, x);
}
tcT> T tmin(T x, T& m, T& M) {
    if (x >= m) return ckmin(M, x);
    return ckmin(m, x);
}

tcTU> T fstTrue(T lo, T hi, U f) {
    ++hi; assert(lo <= hi); // assuming f is increasing
    while (lo < hi) { // find first index such that f is true 
        T mid = lo+(hi-lo)/2;
        f(mid) ? hi = mid : lo = mid+1; 
    } 
    return lo;
}
tcTU> T lstTrue(T lo, T hi, U f) {
    --lo; assert(lo <= hi); // assuming f is decreasing
    while (lo < hi) { // find first index such that f is true 
        T mid = lo+(hi-lo+1)/2;
        f(mid) ? lo = mid : hi = mid-1;
    } 
    return lo;
}
tcT> void UNIQUE(vector<T>& v) { // sort and remove duplicates
    sort(all(v)); v.erase(unique(all(v)),end(v)); }
tcTU> void safeErase(T& t, const U& u) { // don't erase
    auto it = t.find(u); assert(it != end(t));
    t.erase(it); } // element that doesn't exist from (multi)set

#define tcTUU tcT, class ...U

inline namespace Helpers {
    //////////// is_iterable
    // https://stackoverflow.com/questions/13830158/check-if-a-variable-type-is-iterable
    // this gets used only when we can call begin() and end() on that type
    tcT, class = void> struct is_iterable : false_type {};
    tcT> struct is_iterable<T, void_t<decltype(begin(declval<T>())),
                                                                                                                                            decltype(end(declval<T>()))
                                                                                                                                        >
                                                                                                > : true_type {};
    tcT> constexpr bool is_iterable_v = is_iterable<T>::value;

    //////////// is_readable
    tcT, class = void> struct is_readable : false_type {};
    tcT> struct is_readable<T,
                                    typename std::enable_if_t<
                                                    is_same_v<decltype(cin >> declval<T&>()), istream&>
                                    >
                    > : true_type {};
    tcT> constexpr bool is_readable_v = is_readable<T>::value;

    //////////// is_printable
    // // https://nafe.es/posts/2020-02-29-is-printable/
    tcT, class = void> struct is_printable : false_type {};
    tcT> struct is_printable<T,
                                    typename std::enable_if_t<
                                                    is_same_v<decltype(cout << declval<T>()), ostream&>
                                    >
                    > : true_type {};
    tcT> constexpr bool is_printable_v = is_printable<T>::value;
}

#define def(t, args...)                                                        \
    t args;                                                                    \
    re(args);

inline namespace Input {
    tcT> constexpr bool needs_input_v = !is_readable_v<T> && is_iterable_v<T>;
    tcTUU> void re(T& t, U&... u);
    tcTU> void re(pair<T,U>& p); // pairs

    // re: read
    tcT> typename enable_if<is_readable_v<T>,void>::type re(T& x) { cin >> x; } // default
    tcT> void re(complex<T>& c) { T a,b; re(a,b); c = {a,b}; } // complex
    tcT> typename enable_if<needs_input_v<T>,void>::type re(T& i); // ex. vectors, arrays
    tcTU> void re(pair<T,U>& p) { re(p.f,p.s); }
    tcT> typename enable_if<needs_input_v<T>,void>::type re(T& i) {
        each(x,i) re(x); }
    tcTUU> void re(T& t, U&... u) { re(t); re(u...); } // read multiple

    // rv: resize and read vectors
    void rv(size_t) {}
    tcTUU> void rv(size_t N, V<T>& t, U&... u);
    template<class...U> void rv(size_t, size_t N2, U&... u);
    tcTUU> void rv(size_t N, V<T>& t, U&... u) {
        t.rsz(N); re(t);
        rv(N,u...); }
    template<class...U> void rv(size_t, size_t N2, U&... u) {
        rv(N2,u...); }

    // dumb shortcuts to read in ints
    void decrement() {} // subtract one from each
    tcTUU> void decrement(T& t, U&... u) { --t; decrement(u...); }
    #define ints(...) int __VA_ARGS__; re(__VA_ARGS__);
    #define int1(...) ints(__VA_ARGS__); decrement(__VA_ARGS__);
}

inline namespace ToString {
    tcT> constexpr bool needs_output_v = !is_printable_v<T> && is_iterable_v<T>;

    // ts: string representation to print
    tcT> typename enable_if<is_printable_v<T>,str>::type ts(T v) {
        stringstream ss; ss << fixed << setprecision(15) << v;
        return ss.str(); } // default
    tcT> str bit_vec(T t) { // bit vector to string
        str res = "{"; F0R(i,sz(t)) res += ts(t[i]);
        res += "}"; return res; }
    str ts(V<bool> v) { return bit_vec(v); }
    template<size_t SZ> str ts(bitset<SZ> b) { return bit_vec(b); } // bit vector
    tcTU> str ts(pair<T,U> p); // pairs
    tcT> typename enable_if<needs_output_v<T>,str>::type ts(T v); // vectors, arrays
    tcTU> str ts(pair<T,U> p) { return "("+ts(p.f)+", "+ts(p.s)+")"; }
    tcT> typename enable_if<is_iterable_v<T>,str>::type ts_sep(T v, str sep) {
        // convert container to string w/ separator sep
        bool fst = 1; str res = "";
        for (const auto& x: v) {
            if (!fst) res += sep;
            fst = 0; res += ts(x);
        }
        return res;
    }
    tcT> typename enable_if<needs_output_v<T>,str>::type ts(T v) {
        return "{"+ts_sep(v,", ")+"}"; }

    // for nested DS
    template<int, class T> typename enable_if<!needs_output_v<T>,vs>::type 
            ts_lev(const T& v) { return {ts(v)}; }
    template<int lev, class T> typename enable_if<needs_output_v<T>,vs>::type 
            ts_lev(const T& v) {
        if (lev == 0 || !sz(v)) return {ts(v)};
        vs res;
        for (const auto& t: v) {
            if (sz(res)) res.bk += ",";
            vs tmp = ts_lev<lev-1>(t);
            res.ins(end(res),all(tmp));
        }
        F0R(i,sz(res)) {
            str bef = " "; if (i == 0) bef = "{";
            res[i] = bef+res[i];
        }
        res.bk += "}";
        return res;
    }
}

inline namespace Output {
    template<class T> void pr_sep(ostream& os, str, const T& t) { os << ts(t); }
    template<class T, class... U> void pr_sep(ostream& os, str sep, const T& t, const U&... u) {
        pr_sep(os,sep,t); os << sep; pr_sep(os,sep,u...); }
    // print w/ no spaces
    template<class ...T> void pr(const T&... t) { pr_sep(cout,"",t...); } 
    // print w/ spaces, end with newline
    void ps() { cout << "\n"; }
    template<class ...T> void ps(const T&... t) { pr_sep(cout," ",t...); ps(); } 
    // debug to cerr
    template<class ...T> void dbg_out(const T&... t) {
        pr_sep(cerr," | ",t...); cerr << endl; }
    void loc_info(int line, str names) {
        cerr << "Line(" << line << ") -> [" << names << "]: "; }
    template<int lev, class T> void dbgl_out(const T& t) {
        cerr << "\n\n" << ts_sep(ts_lev<lev>(t),"\n") << "\n" << endl; }
    #ifdef I_AM_NOOB
        #define gg(...) loc_info(__LINE__,#__VA_ARGS__), dbg_out(__VA_ARGS__)
        #define ggl(lev,x) loc_info(__LINE__,#x), dbgl_out<lev>(x)
    #else // don't actually submit with this
        #define gg(...) 777771449
        #define ggl(lev,x)
    #endif

    // https://stackoverflow.com/questions/47980498/accurate-c-c-clock-on-a-multi-core-processor-with-auto-overclock?noredirect=1&lq=1
    const auto beg = std::chrono::high_resolution_clock::now();
    void dbg_time() {
        auto duration = chrono::duration<double>(
            std::chrono::high_resolution_clock::now() - beg);
        gg(duration.count());
    }
}

inline namespace FileIO {
    void setIn(str s)  { freopen(s.c_str(),"r",stdin); }
    void setOut(str s) { freopen(s.c_str(),"w",stdout); }
    void setIO(str s = "") {
        cin.tie(0)->sync_with_stdio(0); // unsync C / C++ I/O streams
        // cin.exceptions(cin.failbit);
        // throws exception when do smth illegal
        // ex. try to read letter into int
        if (sz(s) && fopen((s+".in").c_str(), "r")) setIn(s+".in"), setOut(s+".out"); // for old USACO
    }
}

// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0200r0.html
template<class Fun> class y_combinator_result {
    Fun fun_;
public:
    template<class T> explicit y_combinator_result(T &&fun): fun_(std::forward<T>(fun)) {}
    template<class ...Args> decltype(auto) operator()(Args &&...args) { return fun_(std::ref(*this), std::forward<Args>(args)...); }
};
template<class Fun> decltype(auto) yy(Fun &&fun) { return y_combinator_result<std::decay_t<Fun>>(std::forward<Fun>(fun)); }

struct chash {
    // any random-ish large odd number will do
    const uint64_t C = uint64_t(2e18 * PI) + 71;
    // random 32-bit number
    const uint32_t RANDOM =
                    chrono::steady_clock::now().time_since_epoch().count();
    size_t operator()(uint64_t x) const {
        // see https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
        return __builtin_bswap64((x ^ RANDOM) * C);
    }
};
template <class K, class V> using cmap = unordered_map<K, V, chash>;
// example usage: cmap<int, int>

struct Edge {
    ll v, p;
};

ll n, m;
const ll N = 1e5+2, M = 2e5+2;
map<ll, ll> dp[N];
map<ll, ll> sumColor[N];
map<ll, V<Edge>> g[N];

void solve() {
    re(n, m);
    rep(m) {
        def(ll, u, v, c, p);
        u--; v--;
        g[v][c].pb({u, p});
        g[u][c].pb({v, p});
        sumColor[u][c] += p;
        sumColor[v][c] += p;
    }

    // dist, node, colour
    pqg<pair<ll, pl>> q;
    q.push({0, {0, 0}});

    while (sz(q)) {
        auto [d, _] = q.top(); q.pop();
        auto [u, c] = _;
        // gg(u, c, d);

        if (dp[u][c] != d) continue;

        ll D;
        if (c) {
            for (auto to : g[u][c]) {
                D = d+sumColor[u][c] - to.p;
                if (!dp[to.v].count(0) || D < dp[to.v][0]) {
                    dp[to.v][0] = D;
                    q.push({D, {to.v, 0}});
                }
            }
        } else {
            for (auto [c, edges] : g[u]) {
                for (auto to : edges) {
                    // Case 1. We don't flip the edge uv
                    D = d+sumColor[u][c]-to.p;
                    if (!dp[to.v].count(0) || D < dp[to.v][0]) {
                        dp[to.v][0] = D;
                        q.push({D, {to.v, 0}});
                    }

                    // Case 2. You flip precisely uv
                    D = d+to.p;
                    if (!dp[to.v].count(0) || D < dp[to.v][0]) {
                        dp[to.v][0] = D;
                        q.push({D, {to.v, 0}});
                    }

                    // Case 3. We make a covenant that you will visit c on the next move
                    D = d;
                    if (!dp[to.v].count(c) || D < dp[to.v][c]) {
                        dp[to.v][c] = D;
                        q.push({D, {to.v, c}});
                    }
                }
            }
        }
    }

    ps((!dp[n-1].count(0)) ? -1 : dp[n-1][0]);
}

signed main() {
    setIO();
    
    ll tc = 1;
    // cin >> tc;
    while (tc--) solve();

    return 0;
}

Compilation message

Main.cpp: In function 'void Output::dbg_time()':
Main.cpp:261:25: warning: statement has no effect [-Wunused-value]
  261 |         #define gg(...) 777771449
      |                         ^~~~~~~~~
Main.cpp:270:9: note: in expansion of macro 'gg'
  270 |         gg(duration.count());
      |         ^~
Main.cpp: In function 'void FileIO::setIn(str)':
Main.cpp:275:33: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
  275 |     void setIn(str s)  { freopen(s.c_str(),"r",stdin); }
      |                          ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
Main.cpp: In function 'void FileIO::setOut(str)':
Main.cpp:276:33: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
  276 |     void setOut(str s) { freopen(s.c_str(),"w",stdout); }
      |                          ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 4 ms 14424 KB Output is correct
2 Correct 5 ms 14428 KB Output is correct
3 Correct 3 ms 14424 KB Output is correct
4 Correct 3 ms 14428 KB Output is correct
5 Correct 4 ms 14428 KB Output is correct
6 Correct 3 ms 14460 KB Output is correct
7 Correct 4 ms 14684 KB Output is correct
8 Correct 4 ms 14428 KB Output is correct
9 Correct 7 ms 15076 KB Output is correct
10 Correct 6 ms 15116 KB Output is correct
11 Correct 5 ms 14936 KB Output is correct
12 Correct 5 ms 14936 KB Output is correct
13 Correct 5 ms 14940 KB Output is correct
14 Correct 5 ms 15016 KB Output is correct
15 Correct 4 ms 14684 KB Output is correct
16 Correct 5 ms 14940 KB Output is correct
17 Correct 5 ms 14816 KB Output is correct
18 Correct 4 ms 14656 KB Output is correct
19 Correct 5 ms 14680 KB Output is correct
20 Correct 5 ms 14816 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 160 ms 36352 KB Output is correct
2 Correct 52 ms 25608 KB Output is correct
3 Correct 141 ms 32896 KB Output is correct
4 Correct 87 ms 29368 KB Output is correct
5 Correct 798 ms 89812 KB Output is correct
6 Correct 686 ms 79688 KB Output is correct
7 Correct 336 ms 66856 KB Output is correct
8 Correct 293 ms 56512 KB Output is correct
9 Correct 324 ms 56400 KB Output is correct
10 Correct 336 ms 50460 KB Output is correct
11 Correct 84 ms 32080 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 14424 KB Output is correct
2 Correct 5 ms 14428 KB Output is correct
3 Correct 3 ms 14424 KB Output is correct
4 Correct 3 ms 14428 KB Output is correct
5 Correct 4 ms 14428 KB Output is correct
6 Correct 3 ms 14460 KB Output is correct
7 Correct 4 ms 14684 KB Output is correct
8 Correct 4 ms 14428 KB Output is correct
9 Correct 7 ms 15076 KB Output is correct
10 Correct 6 ms 15116 KB Output is correct
11 Correct 5 ms 14936 KB Output is correct
12 Correct 5 ms 14936 KB Output is correct
13 Correct 5 ms 14940 KB Output is correct
14 Correct 5 ms 15016 KB Output is correct
15 Correct 4 ms 14684 KB Output is correct
16 Correct 5 ms 14940 KB Output is correct
17 Correct 5 ms 14816 KB Output is correct
18 Correct 4 ms 14656 KB Output is correct
19 Correct 5 ms 14680 KB Output is correct
20 Correct 5 ms 14816 KB Output is correct
21 Correct 160 ms 36352 KB Output is correct
22 Correct 52 ms 25608 KB Output is correct
23 Correct 141 ms 32896 KB Output is correct
24 Correct 87 ms 29368 KB Output is correct
25 Correct 798 ms 89812 KB Output is correct
26 Correct 686 ms 79688 KB Output is correct
27 Correct 336 ms 66856 KB Output is correct
28 Correct 293 ms 56512 KB Output is correct
29 Correct 324 ms 56400 KB Output is correct
30 Correct 336 ms 50460 KB Output is correct
31 Correct 84 ms 32080 KB Output is correct
32 Correct 96 ms 28500 KB Output is correct
33 Correct 117 ms 31432 KB Output is correct
34 Correct 397 ms 53676 KB Output is correct
35 Correct 248 ms 44532 KB Output is correct
36 Correct 282 ms 53552 KB Output is correct
37 Correct 328 ms 57328 KB Output is correct
38 Correct 359 ms 68456 KB Output is correct
39 Correct 94 ms 32200 KB Output is correct
40 Correct 344 ms 58192 KB Output is correct
41 Correct 367 ms 58188 KB Output is correct
42 Correct 480 ms 65476 KB Output is correct
43 Correct 138 ms 37896 KB Output is correct
44 Correct 291 ms 43720 KB Output is correct
45 Correct 271 ms 53204 KB Output is correct
46 Correct 208 ms 53448 KB Output is correct
47 Correct 297 ms 58392 KB Output is correct
48 Correct 826 ms 90880 KB Output is correct