/*
IN THE NAME OF GOD
*/
#include <bits/stdc++.h>
// #pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pll;
typedef pair<int, int> pii;
typedef long double ld;
#define F first
#define S second
#define Mp make_pair
#define pb push_back
#define pf push_front
#define size(x) ((ll)x.size())
#define all(x) (x).begin(),(x).end()
#define kill(x) cout << x << '\n', exit(0);
#define fuck(x) cout << "(" << #x << " , " << x << ")" << endl
#define endl '\n'
const int N = 3e5+23, lg = 17;
ll Mod = 998244353;
inline ll MOD(ll a, ll mod=Mod) {a%=mod; (a<0)&&(a+=mod); return a;}
inline ll poww(ll a, ll b, ll mod=Mod) {
ll ans = 1;
a=MOD(a, mod);
while (b) {
if (b & 1) ans = MOD(ans*a, mod);
b >>= 1;
a = MOD(a*a, mod);
}
return ans;
}
struct node {
int dp[2][2];
node() {dp[0][0]=dp[0][1]=dp[1][0]=dp[1][1]=0; dp[0][1]=dp[1][0]=N;}
} seg[N];
node merge(node x, node y) {
node z;
z.dp[0][0]=z.dp[1][1]=N;
for(int i=0; i<2; i++) {
for(int j=0; j<2; j++) {
for(int l=0; l<2; l++) {
for(int k=0; k<2; k++) {
z.dp[i][j] = min({z.dp[i][j], x.dp[i][l]+y.dp[k][j]+(l!=k)});
}
}
}
}
return z;
}
int n, tim, dwn[N], tin[N], tout[N], par[N], head[N], h[N], subt[N], typ[N];
int ttmp[2][2][N];
vector<int> adj[N];
void init(int v, int p=0) {
par[v]=p, h[v]=h[p]+1, subt[v]=1;
for(int u : adj[v]) {
if(u == p) continue;
init(u, v); subt[v] += subt[u];
}
}
void dfs(int v, int p) {
int mx = 0;
tin[v] = ++tim, head[v] = p, dwn[p] = v;
for(int u : adj[v]) if(u!=par[v]) mx = (subt[mx] > subt[u] ? mx : u);
if(mx > 0) dfs(mx, p);
for(int u : adj[v]) if(u!=par[v] && u!=mx) dfs(u, u);
tout[v] = tim+1;
}
void update(int ind, node val) {
if(ind == 0) return;
if(ind >= (1<<lg)) {
seg[ind] = val;
} else {
seg[ind] = merge(seg[2*ind], seg[2*ind+1]);
}
update(ind/2, val);
}
node query(int l, int r, int ind=1, int lc=1, int rc=(1<<lg)+1) {
if(lc>=l && rc<=r) return seg[ind];
int mid = (lc+rc)/2;
if(r<=mid) return query(l, r, 2*ind, lc, mid);
if(l>=mid) return query(l, r, 2*ind+1, mid, rc);
return merge(query(l, r, 2*ind, lc, mid), query(l, r, 2*ind+1, mid, rc));
}
void initialize(int _n, vector<int> A, vector<int> B) {
n=_n;
for(int i=0; i<n-1; i++) adj[A[i]].pb(B[i]), adj[B[i]].pb(A[i]);
init(1);
dfs(1, 1);
}
int ftmp[2][2][N];
void reinit(int v) {
int u = v;
node ct;
while(head[v] != 1) {
ct = query(tin[head[v]], tin[dwn[head[v]]]+1);
node tmp = query(tin[par[head[v]]], tin[par[head[v]]]+1);
v=par[head[v]];
ftmp[0][0][tin[v]] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
ftmp[1][0][tin[v]] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
ftmp[0][1][tin[v]] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
ftmp[1][1][tin[v]] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
update(tin[v]+(1<<lg)-1, tmp);
}
v = u;
while(head[v] != 1) {
ct = query(tin[head[v]], tin[dwn[head[v]]]+1);
node tmp = query(tin[par[head[v]]], tin[par[head[v]]]+1);
v=par[head[v]];
tmp.dp[0][0] -= ftmp[0][0][tin[v]];
tmp.dp[1][0] -= ftmp[1][0][tin[v]];
tmp.dp[0][1] -= ftmp[0][1][tin[v]];
tmp.dp[1][1] -= ftmp[1][1][tin[v]];
ttmp[0][0][tin[v]] -= ftmp[0][0][tin[v]];
ttmp[1][0][tin[v]] -= ftmp[1][0][tin[v]];
ttmp[0][1][tin[v]] -= ftmp[0][1][tin[v]];
ttmp[1][1][tin[v]] -= ftmp[1][1][tin[v]];
update(tin[v]+(1<<lg)-1, tmp);
for(int i=0; i<2; i++) for(int j=0; j<2; j++) ftmp[i][j][tin[v]] = 0;
}
}
int cat(int v) {
reinit(v);
typ[v] = 1;
node ct;
ct.dp[1][0]=ct.dp[1][1]=ct.dp[0][1]=n;
if(v==1) ct.dp[1][0] = 0;
for(int i=0; i<2; i++) for(int j=0; j<2; j++) ct.dp[i][j] += ttmp[i][j][tin[v]];
update(tin[v]+(1<<lg)-1, ct);
while(head[v] != 1) {
ct = query(tin[head[v]], tin[dwn[head[v]]]+1);
node tmp = query(tin[par[head[v]]], tin[par[head[v]]]+1);
tmp.dp[0][0] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
tmp.dp[1][0] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
tmp.dp[0][1] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
tmp.dp[1][1] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
v=par[head[v]];
ttmp[0][0][tin[v]] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
ttmp[1][0][tin[v]] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
ttmp[0][1][tin[v]] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
ttmp[1][1][tin[v]] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
update(tin[v]+(1<<lg)-1, tmp);
}
ct = query(tin[1], tin[dwn[1]]+1);
return min({ct.dp[0][0], ct.dp[0][1], ct.dp[1][1], ct.dp[1][0]});
}
int dog(int v) {
reinit(v);
typ[v] = 2;
node ct;
ct.dp[1][0]=ct.dp[0][0]=ct.dp[0][1]=n;
if(v==1) ct.dp[0][1] = 0;
for(int i=0; i<2; i++) for(int j=0; j<2; j++) ct.dp[i][j] += ttmp[i][j][tin[v]];
update(tin[v]+(1<<lg)-1, ct);
while(head[v] != 1) {
ct = query(tin[head[v]], tin[dwn[head[v]]]+1);
node tmp = query(tin[par[head[v]]], tin[par[head[v]]]+1);
tmp.dp[0][0] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
tmp.dp[1][0] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
tmp.dp[0][1] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
tmp.dp[1][1] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
v=par[head[v]];
ttmp[0][0][tin[v]] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
ttmp[1][0][tin[v]] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
ttmp[0][1][tin[v]] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
ttmp[1][1][tin[v]] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
update(tin[v]+(1<<lg)-1, tmp);
}
ct = query(tin[1], tin[dwn[1]]+1);
return min({ct.dp[0][0], ct.dp[0][1], ct.dp[1][1], ct.dp[1][0]});
}
int neighbor(int v) {
reinit(v);
typ[v] = 0;
node ct;
for(int i=0; i<2; i++) for(int j=0; j<2; j++) ct.dp[i][j] += ttmp[i][j][tin[v]];
update(tin[v]+(1<<lg)-1, ct);
while(head[v] != 1) {
ct = query(tin[head[v]], tin[dwn[head[v]]]+1);
node tmp = query(tin[par[head[v]]], tin[par[head[v]]]+1);
tmp.dp[0][0] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
tmp.dp[1][0] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
tmp.dp[0][1] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
tmp.dp[1][1] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
v=par[head[v]];
ttmp[0][0][tin[v]] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
ttmp[1][0][tin[v]] += min({ct.dp[1][0]+1, ct.dp[1][1]+1, ct.dp[0][1], ct.dp[0][0]});
ttmp[0][1][tin[v]] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
ttmp[1][1][tin[v]] += min({ct.dp[0][1]+1, ct.dp[0][0]+1, ct.dp[1][0], ct.dp[1][1]});
update(tin[v]+(1<<lg)-1, tmp);
}
ct = query(tin[1], tin[dwn[1]]+1);
return min({ct.dp[0][0], ct.dp[0][1], ct.dp[1][1], ct.dp[1][0]});
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
22364 KB |
Output is correct |
2 |
Correct |
6 ms |
28508 KB |
Output is correct |
3 |
Correct |
6 ms |
28508 KB |
Output is correct |
4 |
Correct |
6 ms |
26652 KB |
Output is correct |
5 |
Correct |
6 ms |
28508 KB |
Output is correct |
6 |
Correct |
6 ms |
26652 KB |
Output is correct |
7 |
Correct |
6 ms |
28508 KB |
Output is correct |
8 |
Correct |
6 ms |
28508 KB |
Output is correct |
9 |
Correct |
5 ms |
26716 KB |
Output is correct |
10 |
Correct |
6 ms |
28508 KB |
Output is correct |
11 |
Correct |
6 ms |
26968 KB |
Output is correct |
12 |
Correct |
5 ms |
22364 KB |
Output is correct |
13 |
Correct |
5 ms |
22364 KB |
Output is correct |
14 |
Correct |
5 ms |
22364 KB |
Output is correct |
15 |
Correct |
6 ms |
28592 KB |
Output is correct |
16 |
Correct |
7 ms |
28508 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
22364 KB |
Output is correct |
2 |
Correct |
6 ms |
28508 KB |
Output is correct |
3 |
Correct |
6 ms |
28508 KB |
Output is correct |
4 |
Correct |
6 ms |
26652 KB |
Output is correct |
5 |
Correct |
6 ms |
28508 KB |
Output is correct |
6 |
Correct |
6 ms |
26652 KB |
Output is correct |
7 |
Correct |
6 ms |
28508 KB |
Output is correct |
8 |
Correct |
6 ms |
28508 KB |
Output is correct |
9 |
Correct |
5 ms |
26716 KB |
Output is correct |
10 |
Correct |
6 ms |
28508 KB |
Output is correct |
11 |
Correct |
6 ms |
26968 KB |
Output is correct |
12 |
Correct |
5 ms |
22364 KB |
Output is correct |
13 |
Correct |
5 ms |
22364 KB |
Output is correct |
14 |
Correct |
5 ms |
22364 KB |
Output is correct |
15 |
Correct |
6 ms |
28592 KB |
Output is correct |
16 |
Correct |
7 ms |
28508 KB |
Output is correct |
17 |
Correct |
9 ms |
26716 KB |
Output is correct |
18 |
Correct |
9 ms |
28764 KB |
Output is correct |
19 |
Correct |
9 ms |
28800 KB |
Output is correct |
20 |
Correct |
6 ms |
26712 KB |
Output is correct |
21 |
Correct |
7 ms |
28756 KB |
Output is correct |
22 |
Correct |
9 ms |
28764 KB |
Output is correct |
23 |
Correct |
9 ms |
26716 KB |
Output is correct |
24 |
Correct |
8 ms |
28804 KB |
Output is correct |
25 |
Correct |
8 ms |
28764 KB |
Output is correct |
26 |
Correct |
7 ms |
28764 KB |
Output is correct |
27 |
Correct |
6 ms |
26736 KB |
Output is correct |
28 |
Correct |
6 ms |
28764 KB |
Output is correct |
29 |
Correct |
8 ms |
26716 KB |
Output is correct |
30 |
Correct |
6 ms |
28752 KB |
Output is correct |
31 |
Correct |
6 ms |
28764 KB |
Output is correct |
32 |
Correct |
8 ms |
28760 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
22364 KB |
Output is correct |
2 |
Correct |
6 ms |
28508 KB |
Output is correct |
3 |
Correct |
6 ms |
28508 KB |
Output is correct |
4 |
Correct |
6 ms |
26652 KB |
Output is correct |
5 |
Correct |
6 ms |
28508 KB |
Output is correct |
6 |
Correct |
6 ms |
26652 KB |
Output is correct |
7 |
Correct |
6 ms |
28508 KB |
Output is correct |
8 |
Correct |
6 ms |
28508 KB |
Output is correct |
9 |
Correct |
5 ms |
26716 KB |
Output is correct |
10 |
Correct |
6 ms |
28508 KB |
Output is correct |
11 |
Correct |
6 ms |
26968 KB |
Output is correct |
12 |
Correct |
5 ms |
22364 KB |
Output is correct |
13 |
Correct |
5 ms |
22364 KB |
Output is correct |
14 |
Correct |
5 ms |
22364 KB |
Output is correct |
15 |
Correct |
6 ms |
28592 KB |
Output is correct |
16 |
Correct |
7 ms |
28508 KB |
Output is correct |
17 |
Correct |
9 ms |
26716 KB |
Output is correct |
18 |
Correct |
9 ms |
28764 KB |
Output is correct |
19 |
Correct |
9 ms |
28800 KB |
Output is correct |
20 |
Correct |
6 ms |
26712 KB |
Output is correct |
21 |
Correct |
7 ms |
28756 KB |
Output is correct |
22 |
Correct |
9 ms |
28764 KB |
Output is correct |
23 |
Correct |
9 ms |
26716 KB |
Output is correct |
24 |
Correct |
8 ms |
28804 KB |
Output is correct |
25 |
Correct |
8 ms |
28764 KB |
Output is correct |
26 |
Correct |
7 ms |
28764 KB |
Output is correct |
27 |
Correct |
6 ms |
26736 KB |
Output is correct |
28 |
Correct |
6 ms |
28764 KB |
Output is correct |
29 |
Correct |
8 ms |
26716 KB |
Output is correct |
30 |
Correct |
6 ms |
28752 KB |
Output is correct |
31 |
Correct |
6 ms |
28764 KB |
Output is correct |
32 |
Correct |
8 ms |
28760 KB |
Output is correct |
33 |
Correct |
512 ms |
32452 KB |
Output is correct |
34 |
Correct |
168 ms |
32192 KB |
Output is correct |
35 |
Correct |
468 ms |
31688 KB |
Output is correct |
36 |
Correct |
811 ms |
34812 KB |
Output is correct |
37 |
Correct |
20 ms |
30296 KB |
Output is correct |
38 |
Correct |
956 ms |
35364 KB |
Output is correct |
39 |
Correct |
907 ms |
35352 KB |
Output is correct |
40 |
Correct |
834 ms |
35360 KB |
Output is correct |
41 |
Correct |
771 ms |
35388 KB |
Output is correct |
42 |
Correct |
827 ms |
35360 KB |
Output is correct |
43 |
Correct |
807 ms |
35608 KB |
Output is correct |
44 |
Correct |
780 ms |
35360 KB |
Output is correct |
45 |
Correct |
817 ms |
35588 KB |
Output is correct |
46 |
Correct |
835 ms |
35348 KB |
Output is correct |
47 |
Correct |
805 ms |
35356 KB |
Output is correct |
48 |
Correct |
158 ms |
33432 KB |
Output is correct |
49 |
Correct |
176 ms |
34556 KB |
Output is correct |
50 |
Correct |
78 ms |
30044 KB |
Output is correct |
51 |
Correct |
75 ms |
30908 KB |
Output is correct |
52 |
Correct |
39 ms |
29920 KB |
Output is correct |
53 |
Correct |
277 ms |
34124 KB |
Output is correct |
54 |
Correct |
243 ms |
31320 KB |
Output is correct |
55 |
Correct |
632 ms |
33496 KB |
Output is correct |
56 |
Correct |
419 ms |
32024 KB |
Output is correct |
57 |
Correct |
537 ms |
34188 KB |
Output is correct |
58 |
Correct |
27 ms |
30864 KB |
Output is correct |
59 |
Correct |
63 ms |
30812 KB |
Output is correct |
60 |
Correct |
125 ms |
33764 KB |
Output is correct |
61 |
Correct |
150 ms |
34020 KB |
Output is correct |
62 |
Correct |
84 ms |
32800 KB |
Output is correct |
63 |
Correct |
43 ms |
29856 KB |
Output is correct |
64 |
Correct |
48 ms |
27716 KB |
Output is correct |
65 |
Correct |
61 ms |
31576 KB |
Output is correct |
66 |
Correct |
73 ms |
31568 KB |
Output is correct |
67 |
Correct |
58 ms |
32024 KB |
Output is correct |
68 |
Correct |
131 ms |
37184 KB |
Output is correct |
69 |
Correct |
32 ms |
23704 KB |
Output is correct |
70 |
Correct |
11 ms |
22616 KB |
Output is correct |
71 |
Correct |
47 ms |
27876 KB |
Output is correct |
72 |
Correct |
59 ms |
30288 KB |
Output is correct |
73 |
Correct |
266 ms |
42308 KB |
Output is correct |
74 |
Correct |
290 ms |
38764 KB |
Output is correct |
75 |
Correct |
121 ms |
34388 KB |
Output is correct |
76 |
Correct |
112 ms |
33108 KB |
Output is correct |
77 |
Correct |
307 ms |
39292 KB |
Output is correct |