Submission #919319

# Submission time Handle Problem Language Result Execution time Memory
919319 2024-01-31T15:09:16 Z boris_mihov Koala Game (APIO17_koala) C++17
61 / 100
48 ms 600 KB
#include "koala.h"
#include <algorithm>
#include <iostream>
#include <numeric>
#include <cassert>
#include <random>
#include <vector>

typedef long long llong;
const int MAXN = 128;
const int INF =  1e9;

int n, w;
int __b[MAXN];
int __r[MAXN];
std::vector <int> play(const std::vector <int> &b)
{
    assert(b.size() == n);
    for (int i = 0 ; i < n ; ++i)
    {
        __b[i] = b[i];
    }

    playRound(__b, __r);
    std::vector <int> r(n);
    for (int i = 0 ; i < n ; ++i)
    {
        r[i] = __r[i];
    }

    return r;
}

int minValue(int N, int W) 
{
    n = N; w = W;
    std::vector <int> askFor(n, 0);
    askFor[0] = 1;

    std::vector <int> r = play(askFor);
    for (int i = 0 ; i < N ; ++i)
    {
        if (r[i] == 0)
        {
            return i;
        }
    }

    // TODO: Implement Subtask 1 solution here.
    // You may leave this function unmodified if you are not attempting this
    // subtask.
    return 0;
}

int maxValue(int N, int W) 
{
    n = N; w = W;
    int step = 0;
    std::vector <int> candidates(n);
    std::iota(candidates.begin(), candidates.end(), 0);
    while (candidates.size() > 1)
    {
        step++;
        std::vector <int> b(n, 0);
        for (const int &pos : candidates)
        {
            b[pos] = w / candidates.size();
        }

        // step = 2 * step;
        std::vector <int> r = play(b);
        std::vector <int> newCandidates;
        for (const int &pos : candidates)
        {
            if (r[pos] > b[pos])
            {
                newCandidates.push_back(pos);
            }
        }

        candidates = newCandidates;
    }

    // TODO: Implement Subtask 2 solution here.
    // You may leave this function unmodified if you are not attempting this
    // subtask.
    return candidates[0];
}

int knownValues[MAXN];
bool cmp(int x, int y)
{
    if (knownValues[x] != 0 && knownValues[y] != 0)
    {
        return (knownValues[x] < knownValues[y]);
    }

    if (knownValues[x] != 0)
    {
        return true;
    }
    
    if (knownValues[y] != 0)
    {
        return false;
    }
    
    int times = 0;
    int l = 1, rr = 9, mid;
    while (l + 1 < rr)
    {
        times++;
        mid =  l + (rr - l + 1) / 2 + 2 * (rr - l == 8) + (l == 1 && rr == 6);
        std::vector <int> b(n, 0);
        b[x] = b[y] = mid;
    
        std::vector <int> r = play(b);
        if (r[x] > b[x] && r[y] <= b[y]) return false;
        if (r[y] > b[y] && r[x] <= b[x]) return true;
        if (r[x] <= b[x]) rr = mid;
        else l = mid;
    }
 
    std::vector <int> b(n, 0);
    b[x] = b[y] = 1;
    std::vector <int> r = play(b);
    if (r[x] > b[x] && r[y] <= b[y]) return false;
    if (r[y] > b[y] && r[x] <= b[x]) return true;
    assert(false);
}

int greaterValue(int N, int W) 
{
    n = N; w = W;
    int x = 0, y = 1;
    int times = 0;
    int l = 1, rr = 9, mid;
    while (l + 1 < rr)
    {
        times++;
        mid =  l + (rr - l + 1) / 2;
        std::vector <int> b(n, 0);
        b[x] = b[y] = mid;
    
        std::vector <int> r = play(b);
        if (r[x] > b[x] && r[y] <= b[y]) return false;
        if (r[y] > b[y] && r[x] <= b[x]) return true;
        if (r[x] <= b[x]) rr = mid;
        else l = mid;
    }

    return true;
    assert(false);
}

bool sigmaCMP(int x, int y)
{
    std::vector <int> b(n, 0);
    b[x] = b[y] = w / 2;
    std::vector <int> r = play(b);
    if (r[x] > n) return false;
    return true;
}

int toSort[MAXN];
int cpy[MAXN];

void sigmaMerge(int l, int r)
{
    if (l == r)
    {
        return;
    }

    int mid = (l + r) / 2;
    sigmaMerge(l, mid);
    sigmaMerge(mid + 1, r);

    int lPtr = l, rPtr = mid + 1, ptr = l;
    while (lPtr <= mid || rPtr <= r)
    {
        if (lPtr == mid + 1)
        {
            cpy[ptr++] = toSort[rPtr++];
            continue;
        }

        if (rPtr == r + 1)
        {
            cpy[ptr++] = toSort[lPtr++];
            continue;
        }

        if (sigmaCMP(toSort[lPtr], toSort[rPtr]))
        {
            cpy[ptr++] = toSort[lPtr++];
        } else
        {
            cpy[ptr++] = toSort[rPtr++];
        }
    }

    for (int i = l ; i <= r ; ++i)
    {
        toSort[i] = cpy[i];
    }
}   

void merge(int l, int r)
{
    if (l == r)
    {
        return;
    }

    int mid = (l + r) / 2;
    merge(l, mid);
    merge(mid + 1, r);

    int lPtr = l, rPtr = mid + 1, ptr = l;
    while (lPtr <= mid || rPtr <= r)
    {
        if (lPtr == mid + 1)
        {
            cpy[ptr++] = toSort[rPtr++];
            continue;
        }

        if (rPtr == r + 1)
        {
            cpy[ptr++] = toSort[lPtr++];
            continue;
        }

        if (cmp(toSort[lPtr], toSort[rPtr]))
        {
            cpy[ptr++] = toSort[lPtr++];
        } else
        {
            cpy[ptr++] = toSort[rPtr++];
        }
    }

    for (int i = l ; i <= r ; ++i)
    {
        toSort[i] = cpy[i];
    }
}   

std::mt19937 rng(69420);
void allValues(int N, int W, int *res) 
{
    n = N; w = W;
    if (W == 2*N) 
    {
        std::iota(toSort, toSort + n, 0);
        sigmaMerge(0, n - 1);
        for (int i = 0 ; i < n ; ++i)
        {
            res[toSort[i]] = i + 1;
        }

    } else {
        std::iota(toSort, toSort + n, 0);
        std::shuffle(toSort, toSort + n, rng);
        std::fill(knownValues, knownValues + n, 0);

        int c = 13;
        for (int i = 1 ; i <= c ; ++i)
        {
            while (true)
            {
                int pos;
                do pos = rng() % n;
                while (knownValues[pos]);

                std::vector <int> b(n, 0);
                b[pos] = i;
                std::vector <int> r = play(b);
                if (r[pos] > b[pos])
                {
                    for (int j = 0 ; j < n ; ++j)
                    {
                        if (knownValues[j] == 0 && r[j] == 0)
                        {
                            knownValues[j] = i;
                            break;
                        }
                    }

                    break;
                }
            }
        }

        merge(0, n - 1);

        for (int i = 0 ; i < n ; ++i)
        {
            res[toSort[i]] = i + 1;
        }

        // TODO: Implement Subtask 5 solution here.
        // You may leave this block unmodified if you are not attempting this
        // subtask.
    }
}

Compilation message

In file included from /usr/include/c++/10/cassert:44,
                 from koala.cpp:5:
koala.cpp: In function 'std::vector<int> play(const std::vector<int>&)':
koala.cpp:18:21: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
   18 |     assert(b.size() == n);
      |            ~~~~~~~~~^~~~
# Verdict Execution time Memory Grader output
1 Correct 3 ms 344 KB Output is correct
2 Correct 3 ms 344 KB Output is correct
3 Correct 4 ms 344 KB Output is correct
4 Correct 4 ms 344 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 344 KB Output is correct
2 Correct 11 ms 460 KB Output is correct
3 Correct 10 ms 344 KB Output is correct
4 Correct 10 ms 344 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 48 ms 596 KB Output is correct
2 Incorrect 1 ms 344 KB Output isn't correct
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 17 ms 344 KB Output is correct
2 Correct 26 ms 344 KB Output is correct
3 Correct 26 ms 456 KB Output is correct
4 Correct 27 ms 344 KB Output is correct
5 Correct 25 ms 428 KB Output is correct
6 Correct 29 ms 344 KB Output is correct
7 Correct 26 ms 344 KB Output is correct
8 Correct 25 ms 456 KB Output is correct
9 Correct 27 ms 492 KB Output is correct
10 Correct 24 ms 428 KB Output is correct
11 Correct 25 ms 344 KB Output is correct
12 Correct 14 ms 344 KB Output is correct
13 Correct 25 ms 344 KB Output is correct
14 Correct 23 ms 344 KB Output is correct
15 Correct 25 ms 504 KB Output is correct
16 Correct 22 ms 456 KB Output is correct
17 Correct 22 ms 456 KB Output is correct
18 Correct 22 ms 456 KB Output is correct
19 Correct 22 ms 344 KB Output is correct
20 Correct 26 ms 432 KB Output is correct
# Verdict Execution time Memory Grader output
1 Partially correct 13 ms 344 KB Output is partially correct
2 Partially correct 13 ms 344 KB Output is partially correct
3 Partially correct 14 ms 344 KB Output is partially correct
4 Partially correct 16 ms 500 KB Output is partially correct
5 Partially correct 14 ms 344 KB Output is partially correct
6 Partially correct 13 ms 600 KB Output is partially correct
7 Partially correct 14 ms 460 KB Output is partially correct
8 Partially correct 12 ms 344 KB Output is partially correct
9 Partially correct 13 ms 504 KB Output is partially correct
10 Partially correct 13 ms 344 KB Output is partially correct
11 Partially correct 13 ms 460 KB Output is partially correct
12 Partially correct 12 ms 456 KB Output is partially correct
13 Partially correct 12 ms 508 KB Output is partially correct
14 Partially correct 13 ms 344 KB Output is partially correct
15 Partially correct 13 ms 456 KB Output is partially correct
16 Partially correct 12 ms 344 KB Output is partially correct
17 Partially correct 14 ms 460 KB Output is partially correct
18 Partially correct 13 ms 344 KB Output is partially correct
19 Partially correct 18 ms 452 KB Output is partially correct
20 Partially correct 13 ms 456 KB Output is partially correct
21 Partially correct 15 ms 352 KB Output is partially correct
22 Partially correct 15 ms 452 KB Output is partially correct
23 Partially correct 15 ms 344 KB Output is partially correct
24 Partially correct 13 ms 344 KB Output is partially correct
25 Partially correct 12 ms 344 KB Output is partially correct
26 Partially correct 14 ms 460 KB Output is partially correct
27 Partially correct 14 ms 344 KB Output is partially correct
28 Partially correct 13 ms 344 KB Output is partially correct
29 Partially correct 13 ms 344 KB Output is partially correct
30 Partially correct 13 ms 432 KB Output is partially correct
31 Partially correct 13 ms 460 KB Output is partially correct
32 Partially correct 14 ms 460 KB Output is partially correct
33 Partially correct 15 ms 344 KB Output is partially correct
34 Partially correct 12 ms 456 KB Output is partially correct
35 Partially correct 13 ms 456 KB Output is partially correct
36 Partially correct 13 ms 344 KB Output is partially correct
37 Partially correct 14 ms 344 KB Output is partially correct
38 Partially correct 15 ms 452 KB Output is partially correct
39 Partially correct 15 ms 344 KB Output is partially correct
40 Partially correct 12 ms 344 KB Output is partially correct