Submission #918361

# Submission time Handle Problem Language Result Execution time Memory
918361 2024-01-29T17:32:40 Z devkudawla Lightning Rod (NOI18_lightningrod) C++17
66 / 100
1876 ms 262144 KB
// AUTHOR->DEV KUDAWLA
//----------------------------------------------------
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
typedef tree<long long, null_type, less<long long>, rb_tree_tag, tree_order_statistics_node_update> ordered_set; // find_by_order(it return an iterator input is a value), order_of_key(input is index)
typedef tree<long long, null_type, less_equal<int>, rb_tree_tag, tree_order_statistics_node_update> ordered_multiset;
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#define ll long long int
#define vl vector<long long>
#define nline cout << "\n"
#define n_digit(n) (int)log10(n) + 1
#define msb(n) (int)(log2(n)) + 1
// it is 1 based
#define pll pair<ll, ll>
#define all(x) x.begin(), x.end()
#define ternary(a, b, c) ((a) ? (b) : (c))
#define yesno(a) a ? cout << "YES" : cout << "NO"
#define sroot(a) sqrt((long double)a)
#define Max(a, b) max((ll)a, (ll)b)
#define Min(a, b) min((ll)a, (ll)b)
//----------------------------------------------------
template <class T1, class T2>
ostream &operator<<(std::ostream &os, pair<T1, T2> &st)
{
    cout << "{ " << st.first << " " << st.second << " }";
    return os;
}
template <class T>
istream &operator>>(istream &is, vector<T> &v)
{
    int n = v.size();
    for (int i = 0; i < n; i++)
        is >> v[i];
    return is;
}
template <class T>
istream &operator>>(istream &is, vector<vector<T>> &v)
{
    int n = v.size();
    int m = v[0].size();
    for (int i = 0; i < n; i++)
        for (int j = 0; j < m; j++)
            is >> v[i][j];
    return is;
}
template <class T>
ostream &operator<<(std::ostream &os, vector<T> &v)
{
    int n = v.size();
    for (int i = 0; i < n; i++)
        os << v[i] << ((i == n - 1) ? "\n" : " ");
    return os;
}
template <class T>
ostream &operator<<(std::ostream &os, vector<vector<T>> &v)
{
    int n = v.size();
    int m = v[0].size();
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
            os << v[i][j] << " ";
        os << "\n";
    }
    return os;
}
template <class T>
ostream &operator<<(std::ostream &os, set<T> &st)
{
    cout << "---------------------------------\n";
    for (auto i : st)
        cout << i << " ";
    nline;
    cout << "---------------------------------\n";
    return os;
}
template <class T>
ostream &operator<<(std::ostream &os, multiset<T> &st)
{
    cout << "---------------------------------\n";
    for (auto i : st)
        cout << i << " ";
    nline;
    cout << "---------------------------------\n";
    return os;
}
template <class T1, class T2>
ostream &operator<<(std::ostream &os, map<T1, T2> &st)
{
    cout << "-------------------------------\n";
    auto x = st.begin();
    while (x != st.end())
    {
        cout << x->first;
        cout << "  -> ";
        cout << x->second;
        nline;
        x++;
    }
    cout << "-------------------------------\n";
    return os;
}
template <class T>
vector<T> add(vector<T> v1, vector<T> v2)
{
    vector<T> v3 = v1;
    for (ll i = 0; i < v2.size(); i++)
        v3.push_back(v2[i]);
    return v3;
}
template <int D, typename T>
struct Vector : public vector<Vector<D - 1, T>>
{
    static_assert(D >= 1, "Vector dimension must be greater than zero!");
    template <typename U, typename... Args>
    Vector(U n = U(), Args... args) : vector<Vector<D - 1, T>>(n, Vector<D - 1, T>(args...)) {}
};
template <typename T>
struct Vector<1, T> : public vector<T>
{
    template <typename... Args>
    Vector(Args... args) : vector<T>(args...) {}
};
inline ll power2(ll n)
{
    ll answer = 0;
    if (n != 0)
        answer = msb(((ll)n) ^ ((ll)(n - 1))) - 1;
    return answer;
}
inline ll indexOf(ordered_multiset &st, ll value)
{
    return st.order_of_key(value);
}
inline ll valueAt(ordered_multiset &st, ll index)
{
    return *st.find_by_order(index);
}
inline ll indexOf(ordered_set &st, ll value)
{
    return st.order_of_key(value);
}
inline ll valueAt(ordered_set &st, ll index)
{
    return *st.find_by_order(index);
}
template <class T>
void Distinct(T &v, bool sorting = true)
{
    if (sorting)
        sort(begin(v), end(v));
    v.resize(unique(begin(v), end(v)) - begin(v));
}
//----------------------------------------------------
const ll N1 = 1000000007;
const ll N2 = 998244353;
//----------------------------------------------------
// MODULAR ARITHMETIC
inline ll expo(ll a, ll b, ll mod = LONG_LONG_MAX)
{
    ll res = 1;
    while (b > 0)
    {
        if (b & 1)
            res = ((__int128_t)res * a) % mod;
        a = ((__int128_t)a * a) % mod;
        b = b >> 1;
    }
    return res;
}
inline ll mminvprime(ll a, ll b) { return expo(a, b - 2, b); } // FOR PRIME
inline ll mod_add(ll a, ll b, ll m = N1)
{
    a = a % m;
    b = b % m;
    return (((a + b) % m) + m) % m;
}
inline ll mod_mul(ll a, ll b, ll m = N1)
{
    a = a % m;
    b = b % m;
    return (((__int128_t)(a * b) % m) + m) % m;
}
inline ll mod_sub(ll a, ll b, ll m = N1)
{
    a = a % m;
    b = b % m;
    return (((a - b) % m) + m) % m;
}
inline ll mod_div(ll a, ll b, ll m = N1)
{
    a = a % m;
    b = b % m;
    return (mod_mul(a, mminvprime(b, m), m) + m) % m;
} // only for prime m
ll ncr(ll n, ll r, bool mod_version = false, ll mod = N1)
{
    ll answer = 0;
    if (n >= r)
    {
        r = Min(r, n - r);
        if (mod_version == true)
        {
            ll a = 1;
            for (ll i = n; i >= n - r + 1; i--)
                a = mod_mul(a, i, mod);
            ll b = 1;
            for (ll i = 1; i <= r; i++)
                b = mod_mul(b, i, mod);
            b = mminvprime(b, mod);
            a = mod_mul(a, b, mod);
            answer = a;
        }
        else
        {
            ll a = 1;
            ll b = 1;
            for (ll i = n; i >= n - r + 1; i--)
            {
                a *= i;
                b *= (n - i + 1);
                ll g = __gcd(a, b);
                a /= g, b /= g;
            }
            answer = a / b;
        }
    }
    return answer;
}
ll factorial(ll n, bool mod_version = false, ll mod = N1)
{
    ll answer = 1;
    if (mod_version == true)
    {
        for (int i = 2; i <= n; i++)
            answer = mod_mul(answer, i, mod);
    }
    else
    {
        for (int i = 2; i <= n; i++)
            answer *= i;
    }
    return answer;
}
bool is_prime(ll a)
{
    if (a == 1)
        return false;
    for (ll i = 2; i * i <= a; i++)
    {
        if (a % i == 0)
            return false;
    }
    return true;
}
//----------------------------------------------------
map<ll, ll> prime_factors(ll n, bool debug = false)
{
    map<ll, ll> answer;
    ll a = n;
    for (ll i = 2; i * i <= a; i++)
        while (a % i == 0)
            answer[i]++, a /= i;
    if (a > 1)
        answer[a]++;
    if (debug)
    {
        for (auto i : answer)
            cout << i.first << " -> " << i.second << "\n";
    }
    return answer;
}
//----------------------------------------------------
const int n_sieve = (20000008); // O(Nlog(log(N)))
// vector<bool> prime_sieve(n_sieve + 1, true);
void initialise_sieve(vector<bool> &prime_sieve)
{
    prime_sieve[0] = false;
    prime_sieve[1] = false;
    for (ll i = 2; i * i < n_sieve; i++)
        if (prime_sieve[i] == true)
            for (ll j = 2; j * i < n_sieve; j++)
                prime_sieve[j * i] = false;
}
//----------------------------------------------------
// #define LOCAL_COMPILER
#ifdef LOCAL_COMPILER
#define dbg(x)              \
    cerr << "\n"            \
         << #x << " -> \n"; \
    cout << x << "\n";
#endif
#ifndef LOCAL_COMPILER
#define dbg(x)
#endif
//----------------------------------------------------
// CODE STARTS HERE
const int sz = 10000005;
const int sz1 = 10000005;
long long Fenwick[sz] = {0};
long long Fenwick1[sz1] = {0};

// 1 BASED INDEXING
// ALWAYS DECLARE FENWICK TREE GLOBALLY
struct fenwicktree
{
    int n;
    fenwicktree(vector<ll> A)
    {
        n = A.size();
        for (int i = 0; i < A.size(); i++)
            Add(i + 1, A[i]);
    }
    long long Sum(int i)
    {
        long long answer = 0;
        for (; i > 0; i -= (i & (-i)))
            answer += Fenwick[i];
        return answer;
    }
    void Add(int i, long long x)
    {
        for (; i <= n; i += (i & (-i)))
            Fenwick[i] += x;
    }
    long long RangeSum(int l, int r)
    {
        return Sum(r) - Sum(l - 1);
    }
};

// 1 BASED INDEXING
// ALWAYS DECLARE FENWICK TREE GLOBALLY
struct fenwicktree1
{
    int n;
    fenwicktree1(vector<ll> A)
    {
        n = A.size();
        for (int i = 0; i < A.size(); i++)
            Add(i + 1, A[i]);
    }
    long long Sum(int i)
    {
        long long answer = 0;
        for (; i > 0; i -= (i & (-i)))
            answer += Fenwick1[i];
        return answer;
    }
    void Add(int i, long long x)
    {
        for (; i <= n; i += (i & (-i)))
            Fenwick1[i] += x;
    }
    long long RangeSum(int l, int r)
    {
        return Sum(r) - Sum(l - 1);
    }
};
map<ll, ll> D1, D2;
//----------------------------------------------------
void solve(bool testCases = true)
{
    ll T = 1; //->TEST CASES
    if (testCases)
        cin >> T;
    while (T--)
    {
        ll n;
        cin >> n;
        vector<pll> v(n);
        for (ll i = 0; i < n; i++)
        {
            ll a, b;
            cin >> a >> b;
            v[i] = {b, a};
        }
        sort(all(v));
        reverse(all(v));
        int c1, c2;
        {
            vl a;
            for (ll i = 0; i < n; i++)
                a.push_back(v[i].second - v[i].first);
            Distinct(a);
            for (ll i = 0; i < a.size(); i++)
                D1[a[i]] = i + 1;
            c1 = a.size();
            a.clear();
            for (ll i = 0; i < n; i++)
                a.push_back(v[i].second + v[i].first);
            Distinct(a);
            c2 = a.size();
            for (ll i = 0; i < a.size(); i++)
                D2[a[i]] = i + 1;
        }
        fenwicktree a(vl(c1, 0));
        fenwicktree1 b(vl(c2, 0));
        ll answer = 0;
        for (ll i = 0; i < n; i++)
        {
            ll d1 = v[i].second - v[i].first;
            ll d2 = v[i].second + v[i].first;
            ll p1 = a.RangeSum(1, D1[d1]);
            ll p2 = b.RangeSum(D2[d2], c2);
            if (p1 + p2 - answer > 0)
                continue;
            answer++;
            a.Add(D1[d1], 1);
            b.Add(D2[d2], 1);
        }
        cout << answer;
        nline;
    }
    //--------------------------------------------
    //  CODE ENDS HERE
}
//----------------------------------------------------
int main()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
    //------------------------------------------------
    // initialise_sieve(prime_sieve);
    //------------------------------------------------

#ifdef LOCAL_COMPILER
    std::cout << std::fixed << std::setprecision(25);
    std::cerr << std::fixed << std::setprecision(10);
    auto start = std::chrono::high_resolution_clock::now();
#endif

    solve(false);

#ifdef LOCAL_COMPILER
    auto stop = std::chrono::high_resolution_clock::now();
    long double duration = std::chrono::duration_cast<std::chrono::nanoseconds>(stop - start).count();
    std::cerr << "Time taken : " << duration / 1e9 << "s" << std::endl;
#endif
    //------------------------------------------------
    return 0;
}
//----------------------------------------------------

Compilation message

lightningrod.cpp: In constructor 'fenwicktree::fenwicktree(std::vector<long long int>)':
lightningrod.cpp:315:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  315 |         for (int i = 0; i < A.size(); i++)
      |                         ~~^~~~~~~~~~
lightningrod.cpp: In constructor 'fenwicktree1::fenwicktree1(std::vector<long long int>)':
lightningrod.cpp:344:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  344 |         for (int i = 0; i < A.size(); i++)
      |                         ~~^~~~~~~~~~
lightningrod.cpp: In function 'void solve(bool)':
lightningrod.cpp:390:30: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  390 |             for (ll i = 0; i < a.size(); i++)
      |                            ~~^~~~~~~~~~
lightningrod.cpp:398:30: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  398 |             for (ll i = 0; i < a.size(); i++)
      |                            ~~^~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Runtime error 1563 ms 262144 KB Execution killed with signal 9
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2508 KB Output is correct
2 Correct 1 ms 2396 KB Output is correct
3 Correct 1 ms 2396 KB Output is correct
4 Correct 1 ms 2396 KB Output is correct
5 Correct 1 ms 2396 KB Output is correct
6 Correct 1 ms 2396 KB Output is correct
7 Correct 1 ms 2396 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2508 KB Output is correct
2 Correct 1 ms 2396 KB Output is correct
3 Correct 1 ms 2396 KB Output is correct
4 Correct 1 ms 2396 KB Output is correct
5 Correct 1 ms 2396 KB Output is correct
6 Correct 1 ms 2396 KB Output is correct
7 Correct 1 ms 2396 KB Output is correct
8 Correct 1 ms 2396 KB Output is correct
9 Correct 1 ms 2396 KB Output is correct
10 Correct 1 ms 2392 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2508 KB Output is correct
2 Correct 1 ms 2396 KB Output is correct
3 Correct 1 ms 2396 KB Output is correct
4 Correct 1 ms 2396 KB Output is correct
5 Correct 1 ms 2396 KB Output is correct
6 Correct 1 ms 2396 KB Output is correct
7 Correct 1 ms 2396 KB Output is correct
8 Correct 1 ms 2396 KB Output is correct
9 Correct 1 ms 2396 KB Output is correct
10 Correct 1 ms 2392 KB Output is correct
11 Correct 2 ms 2652 KB Output is correct
12 Correct 2 ms 2652 KB Output is correct
13 Correct 2 ms 2652 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2508 KB Output is correct
2 Correct 1 ms 2396 KB Output is correct
3 Correct 1 ms 2396 KB Output is correct
4 Correct 1 ms 2396 KB Output is correct
5 Correct 1 ms 2396 KB Output is correct
6 Correct 1 ms 2396 KB Output is correct
7 Correct 1 ms 2396 KB Output is correct
8 Correct 1 ms 2396 KB Output is correct
9 Correct 1 ms 2396 KB Output is correct
10 Correct 1 ms 2392 KB Output is correct
11 Correct 2 ms 2652 KB Output is correct
12 Correct 2 ms 2652 KB Output is correct
13 Correct 2 ms 2652 KB Output is correct
14 Correct 359 ms 34340 KB Output is correct
15 Correct 417 ms 35644 KB Output is correct
16 Correct 451 ms 33444 KB Output is correct
# Verdict Execution time Memory Grader output
1 Runtime error 1876 ms 262144 KB Execution killed with signal 9
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Runtime error 1563 ms 262144 KB Execution killed with signal 9
2 Halted 0 ms 0 KB -