Submission #911024

# Submission time Handle Problem Language Result Execution time Memory
911024 2024-01-18T11:23:26 Z gawr_gura Stray Cat (JOI20_stray) C++17
91 / 100
43 ms 16484 KB
#include "Anthony.h"

#include <bits/stdc++.h>
using namespace std;

namespace std {

template <int D, typename T>
struct Vec : public vector<Vec<D - 1, T>> {
        static_assert(D >= 1, "Dimension must be positive");
        template <typename... Args>
        Vec(int n = 0, Args... args) : vector<Vec<D - 1, T>>(n, Vec<D - 1, T>(args...)) {}
};

template <typename T>
struct Vec<1, T> : public vector<T> {
        Vec(int n = 0, T val = T()) : std::vector<T>(n, val) {}
};

/* Example
        Vec<4, int64_t> f(n, k, 2, 2); // = f[n][k][2][2];
        Vec<2, int> adj(n); // graph
*/

template <class Fun>
class y_combinator_result {
        Fun fun_;

       public:
        template <class T>
        explicit y_combinator_result(T &&fun) : fun_(std::forward<T>(fun)) {}

        template <class... Args>
        decltype(auto) operator()(Args &&...args) {
                return fun_(std::ref(*this), std::forward<Args>(args)...);
        }
};

template <class Fun>
decltype(auto) y_combinator(Fun &&fun) {
        return y_combinator_result<std::decay_t<Fun>>(std::forward<Fun>(fun));
}

/* Example
        auto fun = y_combinator([&](auto self, int x) -> void {
                self(x + 1);
        });
*/

}  // namespace std

std::vector<int> Mark(int N, int M, int A, int B,
                      std::vector<int> U, std::vector<int> V) {
        vector<vector<pair<int, int>>> adj(N);
        for (int i = 0; i < M; i++) adj[U[i]].emplace_back(V[i], i);
        for (int i = 0; i < M; i++) adj[V[i]].emplace_back(U[i], i);
        vector<int> depth(M, -1);
        vector<int> d(N, -1);
        if (A == 4) A = 3;
        if (A == 3) {
                queue<int> q;
                q.emplace(0);
                d[0] = 0;
                while (q.size()) {
                        int u = q.front();
                        q.pop();
                        for (auto &&[v, i] : adj[u]) {
                                if (d[v] == -1) {
                                        d[v] = d[u] + 1;
                                        depth[i] = d[u];
                                        q.emplace(v);
                                }
                        }
                }

                vector<int> ans(M);
                for (int i = 0; i < M; i++) {
                        if (depth[i] == -1) {
                                if (d[U[i]] == d[V[i]]) {
                                        ans[i] = d[U[i]] % 3;
                                } else {
                                        ans[i] = min(d[U[i]], d[V[i]]) % 3;
                                }
                        } else {
                                ans[i] = depth[i] % 3;
                        }
                }

                return ans;
        } else {
                vector<int> base({0, 1, 1, 0, 0, 1});
                vector<int> deg(N);
                for (int i = 0; i < M; i++) deg[U[i]]++, deg[V[i]]++;
                queue<int> q;
                q.emplace(0);
                d[0] = 0;
                vector<int> par(N);
                vector<int> ans(M);
                while (q.size()) {
                        int u = q.front();
                        q.pop();
                        for (auto &&[v, i] : adj[u]) {
                                if (d[v] == -1) {
                                        d[v] = d[u] + 1;
                                        if (u == 0 || deg[u] == 2) {
                                        } else {
                                                for (int j = 0; j < 6; j++) {
                                                        if (base[(666666 - j) % 6] != base[par[u]]) d[v] = j;
                                                }
                                        }
                                        ans[i] = (666666 - d[v]) % 6;
                                        par[v] = ans[i];
                                        q.emplace(v);
                                }
                        }
                }

                for (int i = 0; i < M; i++) ans[i] = base[ans[i]];

                return ans;
        }
}
#include "Catherine.h"

#include <bits/stdc++.h>
using namespace std;

namespace std {

template <int D, typename T>
struct Vec : public vector<Vec<D - 1, T>> {
        static_assert(D >= 1, "Dimension must be positive");
        template <typename... Args>
        Vec(int n = 0, Args... args) : vector<Vec<D - 1, T>>(n, Vec<D - 1, T>(args...)) {}
};

template <typename T>
struct Vec<1, T> : public vector<T> {
        Vec(int n = 0, T val = T()) : std::vector<T>(n, val) {}
};

/* Example
        Vec<4, int64_t> f(n, k, 2, 2); // = f[n][k][2][2];
        Vec<2, int> adj(n); // graph
*/

template <class Fun>
class y_combinator_result {
        Fun fun_;

       public:
        template <class T>
        explicit y_combinator_result(T &&fun) : fun_(std::forward<T>(fun)) {}

        template <class... Args>
        decltype(auto) operator()(Args &&...args) {
                return fun_(std::ref(*this), std::forward<Args>(args)...);
        }
};

template <class Fun>
decltype(auto) y_combinator(Fun &&fun) {
        return y_combinator_result<std::decay_t<Fun>>(std::forward<Fun>(fun));
}

/* Example
        auto fun = y_combinator([&](auto self, int x) -> void {
                self(x + 1);
        });
*/

}  // namespace std

namespace {

int A, B;
stack<int> st;
int last = -1;
vector<int> base({0, 1, 1, 0, 0, 1});
vector<int> possible;
bool good = 0;

}  // namespace

void Init(int A, int B) {
        ::A = A;
        ::A = min(::A, 3);
        ::B = B;
        possible.resize(6);
        iota(possible.begin(), possible.end(), 0);
}

int Move(std::vector<int> y) {
        if (A == 3) {
                int cnt = 0;
                for (int i = 0; i < A; i++) {
                        cnt += y[i] > 0;
                }
                if (cnt == 1) {
                        for (int i = 0; i < A; i++) {
                                if (y[i] > 0) return i;
                        }
                } else {
                        for (int i = 0; i < A; i++) {
                                if (y[i] > 0 && y[(i + 1) % A] > 0) return i;
                        }
                }
        } else {
                if (last != -1) y[last]++;
                int cnt = 0;
                int xam = 0;
                for (int i = 0; i < A; i++) {
                        xam = max(xam, y[i]);
                        cnt += y[i] > 0;
                }
                int nxt = -1;
                if (xam > 1 && cnt > 1) {
                        good = 1;
                        for (int i = 0; i < A; i++) {
                                if (y[i] == 1) {
                                        int ans = last == i ? -1 : i;
                                        last = i;
                                        return ans;
                                }
                        }
                } else {
                        if (cnt == 1) {
                                for (int i = 0; i < A; i++) {
                                        if (y[i] == 1) {
                                                good = 1;
                                                int ans = last == i ? -1 : i;
                                                last = i;
                                                return ans;
                                        }
                                }
                                for (int i = 0; i < A; i++) {
                                        if (y[i] > 0) nxt = i;
                                }
                                if (good) {
                                        last = nxt;
                                        return nxt;
                                }
                                goto check;
                        } else {
                                if (good) {
                                        last ^= 1;
                                        return last;
                                } else {
                                        goto check;
                                }
                        }
                }
        check:;

                if (nxt == -1) {
                        if (last == -1) {
                                vector<int> npo;
                                for (int i : possible) {
                                        if (base[(i + 1) % 6] == 0) npo.emplace_back((i + 1) % 6);
                                }
                                possible.swap(npo);
                                nxt = 1;
                        } else {
                                nxt = cnt == 1 ? last : (last ^ 1);
                        }
                } else {
                        if (last == -1) {
                                vector<int> npo;
                                for (int i : possible) {
                                        if (base[(i + 1) % 6] == nxt) npo.emplace_back((i + 1) % 6);
                                }
                        }
                }
                vector<int> npo;
                for (int i : possible) {
                        if (base[(i + 1) % 6] == nxt) npo.emplace_back((i + 1) % 6);
                }
                possible.swap(npo);
                if (possible.size() == 0) {
                        good = 1;
                        return -1;
                } else {
                        last = nxt;
                        return nxt;
                }
        }
}

Compilation message

Catherine.cpp: In function 'int Move(std::vector<int>)':
Catherine.cpp:165:1: warning: control reaches end of non-void function [-Wreturn-type]
  165 | }
      | ^
# Verdict Execution time Memory Grader output
1 Correct 36 ms 15484 KB Output is correct
2 Correct 1 ms 792 KB Output is correct
3 Correct 30 ms 14712 KB Output is correct
4 Correct 40 ms 16352 KB Output is correct
5 Correct 43 ms 16484 KB Output is correct
6 Correct 30 ms 15208 KB Output is correct
7 Correct 28 ms 15232 KB Output is correct
8 Correct 34 ms 15844 KB Output is correct
9 Correct 41 ms 15900 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 36 ms 15484 KB Output is correct
2 Correct 1 ms 792 KB Output is correct
3 Correct 30 ms 14712 KB Output is correct
4 Correct 40 ms 16352 KB Output is correct
5 Correct 43 ms 16484 KB Output is correct
6 Correct 30 ms 15208 KB Output is correct
7 Correct 28 ms 15232 KB Output is correct
8 Correct 34 ms 15844 KB Output is correct
9 Correct 41 ms 15900 KB Output is correct
10 Correct 26 ms 13284 KB Output is correct
11 Correct 27 ms 13196 KB Output is correct
12 Correct 27 ms 13736 KB Output is correct
13 Correct 27 ms 13144 KB Output is correct
14 Correct 27 ms 13528 KB Output is correct
15 Correct 37 ms 13660 KB Output is correct
16 Correct 36 ms 15776 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 28 ms 12900 KB Output is correct
2 Correct 1 ms 784 KB Output is correct
3 Correct 26 ms 12412 KB Output is correct
4 Correct 37 ms 13992 KB Output is correct
5 Correct 34 ms 14100 KB Output is correct
6 Correct 27 ms 12924 KB Output is correct
7 Correct 30 ms 12908 KB Output is correct
8 Correct 34 ms 13696 KB Output is correct
9 Correct 33 ms 13664 KB Output is correct
10 Correct 30 ms 13688 KB Output is correct
11 Correct 30 ms 13444 KB Output is correct
12 Correct 34 ms 13436 KB Output is correct
13 Correct 32 ms 13444 KB Output is correct
14 Correct 34 ms 13620 KB Output is correct
15 Correct 35 ms 13720 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 28 ms 12900 KB Output is correct
2 Correct 1 ms 784 KB Output is correct
3 Correct 26 ms 12412 KB Output is correct
4 Correct 37 ms 13992 KB Output is correct
5 Correct 34 ms 14100 KB Output is correct
6 Correct 27 ms 12924 KB Output is correct
7 Correct 30 ms 12908 KB Output is correct
8 Correct 34 ms 13696 KB Output is correct
9 Correct 33 ms 13664 KB Output is correct
10 Correct 30 ms 13688 KB Output is correct
11 Correct 30 ms 13444 KB Output is correct
12 Correct 34 ms 13436 KB Output is correct
13 Correct 32 ms 13444 KB Output is correct
14 Correct 34 ms 13620 KB Output is correct
15 Correct 35 ms 13720 KB Output is correct
16 Correct 24 ms 11236 KB Output is correct
17 Correct 25 ms 11444 KB Output is correct
18 Correct 26 ms 11228 KB Output is correct
19 Correct 26 ms 11248 KB Output is correct
20 Correct 34 ms 11936 KB Output is correct
21 Correct 27 ms 11748 KB Output is correct
22 Correct 33 ms 13736 KB Output is correct
23 Correct 26 ms 11504 KB Output is correct
24 Correct 27 ms 11480 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 1304 KB Output is correct
2 Correct 1 ms 792 KB Output is correct
3 Correct 1 ms 1044 KB Output is correct
4 Correct 2 ms 1052 KB Output is correct
5 Correct 2 ms 1052 KB Output is correct
6 Correct 2 ms 1036 KB Output is correct
7 Correct 2 ms 1044 KB Output is correct
8 Correct 2 ms 1040 KB Output is correct
9 Correct 2 ms 1044 KB Output is correct
10 Correct 2 ms 1052 KB Output is correct
11 Correct 2 ms 1036 KB Output is correct
12 Correct 2 ms 1036 KB Output is correct
13 Correct 2 ms 1052 KB Output is correct
14 Correct 2 ms 1052 KB Output is correct
15 Correct 2 ms 1044 KB Output is correct
16 Correct 2 ms 1052 KB Output is correct
17 Correct 2 ms 1052 KB Output is correct
18 Correct 2 ms 1052 KB Output is correct
19 Correct 2 ms 1052 KB Output is correct
20 Correct 2 ms 1052 KB Output is correct
21 Correct 2 ms 1048 KB Output is correct
22 Correct 2 ms 1052 KB Output is correct
23 Correct 2 ms 1044 KB Output is correct
24 Correct 2 ms 1044 KB Output is correct
25 Correct 2 ms 1044 KB Output is correct
26 Correct 2 ms 1052 KB Output is correct
27 Correct 2 ms 1044 KB Output is correct
28 Correct 2 ms 1052 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 35 ms 11564 KB Output is correct
2 Correct 30 ms 11672 KB Output is correct
3 Correct 1 ms 788 KB Output is correct
4 Correct 23 ms 11132 KB Output is correct
5 Correct 38 ms 12272 KB Output is correct
6 Correct 32 ms 12364 KB Output is correct
7 Correct 27 ms 11392 KB Output is correct
8 Correct 31 ms 11456 KB Output is correct
9 Correct 31 ms 12428 KB Output is correct
10 Correct 32 ms 12400 KB Output is correct
11 Correct 34 ms 12420 KB Output is correct
12 Correct 34 ms 12320 KB Output is correct
13 Correct 33 ms 12408 KB Output is correct
14 Correct 35 ms 12280 KB Output is correct
15 Correct 32 ms 12388 KB Output is correct
16 Correct 31 ms 12416 KB Output is correct
17 Correct 30 ms 12152 KB Output is correct
18 Correct 34 ms 12004 KB Output is correct
19 Correct 33 ms 11968 KB Output is correct
20 Correct 30 ms 12128 KB Output is correct
21 Correct 28 ms 11996 KB Output is correct
22 Correct 32 ms 12160 KB Output is correct
23 Correct 28 ms 11172 KB Output is correct
24 Correct 26 ms 11380 KB Output is correct
25 Correct 26 ms 11436 KB Output is correct
26 Correct 27 ms 11436 KB Output is correct
27 Correct 28 ms 11684 KB Output is correct
28 Correct 30 ms 11888 KB Output is correct
29 Correct 37 ms 11872 KB Output is correct
30 Correct 34 ms 11852 KB Output is correct
31 Correct 26 ms 11168 KB Output is correct
32 Correct 26 ms 11180 KB Output is correct
33 Correct 26 ms 11440 KB Output is correct
34 Correct 27 ms 11628 KB Output is correct
35 Correct 28 ms 11692 KB Output is correct
36 Correct 28 ms 11688 KB Output is correct
37 Correct 30 ms 11600 KB Output is correct
38 Correct 27 ms 11780 KB Output is correct
39 Correct 28 ms 11684 KB Output is correct
40 Correct 28 ms 11688 KB Output is correct
41 Correct 31 ms 11852 KB Output is correct
42 Correct 30 ms 11852 KB Output is correct
43 Correct 31 ms 11956 KB Output is correct
44 Correct 30 ms 11928 KB Output is correct
45 Correct 30 ms 11936 KB Output is correct
46 Correct 31 ms 11944 KB Output is correct
47 Correct 27 ms 11676 KB Output is correct
48 Correct 35 ms 11688 KB Output is correct
49 Correct 28 ms 11432 KB Output is correct
50 Correct 34 ms 11788 KB Output is correct
51 Correct 26 ms 11688 KB Output is correct
52 Correct 28 ms 11424 KB Output is correct
53 Correct 27 ms 11680 KB Output is correct
54 Correct 31 ms 12184 KB Output is correct
55 Correct 26 ms 11668 KB Output is correct
56 Correct 26 ms 11696 KB Output is correct
57 Correct 25 ms 11584 KB Output is correct
58 Correct 27 ms 11600 KB Output is correct
59 Correct 34 ms 11412 KB Output is correct
60 Correct 26 ms 11392 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 25 ms 11388 KB Output is correct
2 Correct 27 ms 11404 KB Output is correct
3 Correct 1 ms 1044 KB Output is correct
4 Correct 23 ms 11140 KB Output is correct
5 Correct 32 ms 12412 KB Output is correct
6 Correct 38 ms 12388 KB Output is correct
7 Correct 27 ms 11328 KB Output is correct
8 Incorrect 25 ms 11396 KB Wrong Answer [6]
9 Halted 0 ms 0 KB -