Submission #906807

# Submission time Handle Problem Language Result Execution time Memory
906807 2024-01-15T02:54:43 Z Keshav211 Mecho (IOI09_mecho) C++14
95 / 100
160 ms 17648 KB
#include <algorithm>
#include <fstream>
#include <iostream>
#include <vector>
#include <map>
#include <stack>
#include <queue>
#include <set>
#include <chrono>
#include <string>
#include <numeric>
#include <cmath>
#include <iomanip>
#include <climits>
#include <bitset>
#define all(x) (x).begin(), (x).end()
#define vec(n) vll arr(n);
#define printarr(arr) for(auto i:arr)cout<<i<<" "; cout<<endl;
#define printdict(dict) for(auto i:dict)cout<<i.first<<": "<<i.second<<endl;
#define printadj(adj) for(ll i=0;i<n;i++){if(!adj[i].empty()){cout<<i<<": ";printarr(adj[i])}}
#define read(arr); for(ll i=0;i<arr.size();i++) cin>>arr[i];
#define readundirected(m) for(ll i=0;i<m;i++){ll a,b; cin>>a>>b; a--;b--; adj[a].pb(b);adj[b].pb(a);}
#define readdirected(m) for(ll i=0;i<m;i++){ll a,b; cin>>a>>b; a--;b--; adj[a].pb(b);}
#define readfunc(n) for(ll i=0;i<n;i++){ll a;cin>>a;a--;func_adj[i]=a;}
#define grid(n,m) for (ll i=1;i<=n;i++){for (ll j=1;j<=m;j++) cin>>graph[i][j];}
#define vll vector<ll>
#define sll set<ll>
#define msll multiset<ll>
#define qll queue<ll>
#define pll pair<ll,ll>
#define str string
#define pb push_back
#define ll long long
#define ld long double
using namespace std;
const str alph="abcdefghijklmnopqrstuvwxyz";
const str capalph="ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const ll inf=2e5+1;
const ll graph_size=1000;
const ll mod=1e9+7;
const ll large=1e18;
const ll small=-1e18;
// Fast Input/Output
void fastio(){
    ios_base::sync_with_stdio(0);
    cin.tie(nullptr);
}
// File Input/Output
str fileio(const string&filePath=__FILE__){
    size_t lastSlash=filePath.find_last_of('/');
    size_t lastDot=filePath.rfind('.');
    return filePath.substr(lastSlash+1,lastDot-lastSlash-1);
}
// For Yes Or No Problems
str yes_or_no(bool test){
    if (test){
       return "YES";
    }
    return "NO";
}
ll n,m,q,s;
// Floodfill
char graph[graph_size+2][graph_size+2];
vector<pll> directions={{0,-1},{-1,0},{1,0},{0,1}};
bool floodfill_visited[graph_size+2][graph_size+2];
ll floodfill_bee_level[graph_size+2][graph_size+2];
vector<pll> hives;
void floodfill_bee_bfs(){
    for (ll i=0;i<=n+1;i++){
        for (ll j=0;j<=m+1;j++){
            floodfill_bee_level[i][j]=large;
            floodfill_visited[i][j]=0;
        }
    }
    queue<pll> q;
    for (auto i:hives){
        q.push(i);
        floodfill_bee_level[i.first][i.second]=0;
    }
    while (!q.empty()){
        pll curr=q.front();
        q.pop();
        ll x=curr.first;
        ll y=curr.second;
        floodfill_visited[x][y]=1;
        for (auto i:directions){
            if (graph[x+i.first][y+i.second]!='T' and x+i.first>=1 and x+i.first<=n and y+i.second>=1 and y+i.second<=m and floodfill_bee_level[x+i.first][y+i.second]==large){
                floodfill_bee_level[x+i.first][y+i.second]=floodfill_bee_level[x][y]+1;
                q.push({x+i.first,y+i.second});
            }
        }
    }
}
bool graph1[graph_size+2][graph_size+2];
ll floodfill_ans_level[graph_size+2][graph_size+2];
void floodfill_ans_bfs(pll coord,ll t){
    for (ll i=0;i<=n+1;i++){
        for (ll j=0;j<=m+1;j++){
            floodfill_ans_level[i][j]=large;
            floodfill_visited[i][j]=0;
        }
    }
    ll x=coord.first;
    ll y=coord.second;
    queue<pll> q;
    q.push({x,y});
    floodfill_ans_level[x][y]=0;
    while (!q.empty()){
        pll curr=q.front();
        q.pop();
        x=curr.first;
        y=curr.second;
        floodfill_visited[x][y]=1;
        for (auto i:directions){
            if (graph[x+i.first][y+i.second]!='T' and (floodfill_ans_level[x][y]+1)/s+t<floodfill_bee_level[x+i.first][y+i.second] and x+i.first>=1 and x+i.first<=n and y+i.second>=1 and y+i.second<=m and floodfill_ans_level[x+i.first][y+i.second]==large){
                floodfill_ans_level[x+i.first][y+i.second]=floodfill_ans_level[x][y]+1;
                q.push({x+i.first,y+i.second});
            }
        }
    }
}
// Binary Search
pll home,bear;
bool check(ll t){
    if (t>=floodfill_bee_level[bear.first][bear.second]){
        return 0;
    }
    floodfill_ans_bfs(bear,t);
    bool test=0;
    for (auto i:directions){
        test=max(test,floodfill_visited[home.first+i.first][home.second+i.second]);
    }
    return test;
}
// Returns the first value in the range such that check(value)=True.
ll first_true(ll low,ll high){
    while (low<high){
        ll mid=(low+high)/2;
        if (check(mid)){
            high=mid;
        }
        else{
            low=mid+1;
        }
    }
    return low;
}
// Returns the last value in the range such that check(value)=True.
ll last_true(ll low,ll high){
    while (low<high){
        ll mid=(low+high+1)/2;
        if (check(mid)){
            low=mid;
        }
        else{
            high=mid-1;
        }
    }
    return low;
}
int main(){
    // auto start_time=chrono::steady_clock::now();
    fastio();
    // str filename=fileio();
    // ifstream cin(filename+".in");
    // ofstream cout(filename+".out");
    ll t=1;
    // cin>>t;
    while (t--){
        cin>>n>>s;
        m=n;
        grid(n,m);
        for (ll i=1;i<=n;i++){
            for (ll j=1;j<=m;j++){
                if (graph[i][j]=='H'){
                    hives.pb({i,j});
                }
                if (graph[i][j]=='M'){
                    bear={i,j};
                }
                if (graph[i][j]=='D'){
                    home={i,j};
                }
            }
        }
        floodfill_bee_bfs();
        ll ans=last_true(0,large);
        if (!check(0)){
            ans--;
        }
        cout<<ans<<"\n";
    }
    // auto end_time=chrono::steady_clock::now();
    // auto elapsed_time=chrono::duration_cast<chrono::milliseconds>(end_time-start_time);
    // cout<<"Elapsed time: "<<elapsed_time.count()<<" milliseconds\n";
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 4444 KB Output is correct
2 Correct 1 ms 4444 KB Output is correct
3 Correct 1 ms 4444 KB Output is correct
4 Correct 1 ms 4444 KB Output is correct
5 Correct 1 ms 4444 KB Output is correct
6 Correct 1 ms 4444 KB Output is correct
7 Correct 87 ms 17268 KB Output is correct
8 Correct 1 ms 4440 KB Output is correct
9 Correct 1 ms 4444 KB Output is correct
10 Correct 1 ms 4444 KB Output is correct
11 Correct 1 ms 4444 KB Output is correct
12 Incorrect 2 ms 6492 KB Output isn't correct
13 Correct 1 ms 6492 KB Output is correct
14 Correct 1 ms 6492 KB Output is correct
15 Correct 1 ms 4444 KB Output is correct
16 Correct 2 ms 4444 KB Output is correct
17 Correct 1 ms 6492 KB Output is correct
18 Correct 1 ms 6492 KB Output is correct
19 Correct 1 ms 6492 KB Output is correct
20 Correct 2 ms 6492 KB Output is correct
21 Correct 2 ms 6492 KB Output is correct
22 Correct 2 ms 6492 KB Output is correct
23 Correct 2 ms 6492 KB Output is correct
24 Correct 2 ms 6492 KB Output is correct
25 Correct 1 ms 6492 KB Output is correct
26 Correct 1 ms 6492 KB Output is correct
27 Correct 1 ms 6492 KB Output is correct
28 Correct 1 ms 6492 KB Output is correct
29 Correct 1 ms 6492 KB Output is correct
30 Correct 1 ms 6492 KB Output is correct
31 Correct 2 ms 6492 KB Output is correct
32 Correct 1 ms 6492 KB Output is correct
33 Correct 5 ms 10844 KB Output is correct
34 Correct 5 ms 10844 KB Output is correct
35 Correct 19 ms 10844 KB Output is correct
36 Correct 7 ms 10716 KB Output is correct
37 Correct 7 ms 10844 KB Output is correct
38 Correct 25 ms 10844 KB Output is correct
39 Correct 10 ms 10844 KB Output is correct
40 Correct 10 ms 10844 KB Output is correct
41 Correct 32 ms 10908 KB Output is correct
42 Correct 9 ms 12892 KB Output is correct
43 Correct 12 ms 12948 KB Output is correct
44 Correct 42 ms 12892 KB Output is correct
45 Correct 12 ms 14952 KB Output is correct
46 Correct 12 ms 15012 KB Output is correct
47 Correct 48 ms 14952 KB Output is correct
48 Correct 14 ms 14936 KB Output is correct
49 Correct 15 ms 14940 KB Output is correct
50 Correct 59 ms 14940 KB Output is correct
51 Correct 15 ms 14940 KB Output is correct
52 Correct 18 ms 14940 KB Output is correct
53 Correct 81 ms 14800 KB Output is correct
54 Correct 17 ms 15192 KB Output is correct
55 Correct 16 ms 14816 KB Output is correct
56 Correct 81 ms 14996 KB Output is correct
57 Correct 20 ms 17052 KB Output is correct
58 Correct 20 ms 16988 KB Output is correct
59 Correct 94 ms 16988 KB Output is correct
60 Correct 24 ms 16988 KB Output is correct
61 Correct 23 ms 16988 KB Output is correct
62 Correct 102 ms 16988 KB Output is correct
63 Correct 85 ms 16884 KB Output is correct
64 Correct 158 ms 17060 KB Output is correct
65 Correct 160 ms 17056 KB Output is correct
66 Correct 103 ms 16984 KB Output is correct
67 Correct 86 ms 17040 KB Output is correct
68 Correct 39 ms 16976 KB Output is correct
69 Correct 45 ms 16988 KB Output is correct
70 Correct 31 ms 16976 KB Output is correct
71 Correct 33 ms 16852 KB Output is correct
72 Correct 35 ms 16912 KB Output is correct
73 Correct 38 ms 17472 KB Output is correct
74 Correct 89 ms 17588 KB Output is correct
75 Correct 84 ms 17640 KB Output is correct
76 Correct 63 ms 17648 KB Output is correct
77 Correct 74 ms 17376 KB Output is correct
78 Correct 91 ms 17488 KB Output is correct
79 Correct 86 ms 17460 KB Output is correct
80 Correct 61 ms 17492 KB Output is correct
81 Correct 92 ms 17580 KB Output is correct
82 Correct 65 ms 17500 KB Output is correct
83 Correct 75 ms 17484 KB Output is correct
84 Correct 104 ms 17236 KB Output is correct
85 Correct 84 ms 17500 KB Output is correct
86 Correct 81 ms 17488 KB Output is correct
87 Correct 71 ms 17488 KB Output is correct
88 Correct 125 ms 17236 KB Output is correct
89 Correct 126 ms 17328 KB Output is correct
90 Correct 130 ms 17376 KB Output is correct
91 Correct 85 ms 17244 KB Output is correct
92 Correct 124 ms 17232 KB Output is correct