Submission #906698

# Submission time Handle Problem Language Result Execution time Memory
906698 2024-01-14T18:51:17 Z vjudge1 Catfish Farm (IOI22_fish) C++17
44 / 100
345 ms 21076 KB
#include "fish.h"

#pragma GCC target ("avx2")
#pragma GCC optimize ("O3")
#pragma GCC optimize ("unroll-loops")

#include<bits/stdc++.h>
#include<math.h>
using namespace std;

typedef long long int ll;
typedef long double ld;
typedef pair<ll, ll> pl;
typedef vector<ll> vl;
#define FD(i, r, l) for(ll i = r; i > (l); --i)

#define K first
#define V second
#define G(x) ll x; cin >> x;
#define GD(x) ld x; cin >> x;
#define GS(s) string s; cin >> s;
#define EX(x) { cout << x << '\n'; exit(0); }
#define A(a) (a).begin(), (a).end()
#define F(i, l, r) for (ll i = l; i < (r); ++i)

#define NN 310

ll grid[NN][NN];
ll n;

ll dp1[NN][NN];
ll noreq(ll, ll); // no request fishies, so len == prev wall. 

ll dp2[NN][NN];
ll req(ll, ll); 

// previous column did NOT request any right fishies here
// so we simply have a free wall to attach to 
ll noreq(ll i, ll len) {
    // assert(len == 0 or len == n);
    if (i == n) return 0;
    auto &DP = dp1[i][len];
    if (!~DP) {
        DP = noreq(i+1, n); // no restrictions so build big wall.

        F(nlen, 0, n+1) DP = max(DP, req(i, nlen)); // basically can set up any wall here before taking right fishes

        ll lsum = 0;
        F(j, 0, len) {
            lsum += grid[i][j];
        }
        DP = max(DP, lsum + noreq(i+1, 0));
        {
            ll tsum = lsum;
            F(j, 0, len) {
                tsum -= grid[i][j];
                DP = max(DP, tsum + noreq(i+1, j+1));
            }
        }


        F(covering, len, n) {
            // not lsum naymore jsut cum sum
            lsum += grid[i][covering];
            DP = max(DP, lsum + req(i+1, covering + 1));
        }

    }   
    return DP;   
}


// previous column requested right fishes here;
// so len == min bound on wall (we cannot take anything below len)

ll req(ll i, ll len) {
    if (i == n) return len == 0 ? 0 : -9e18; // i should need 0 fishes here
    auto &DP = dp2[i][len];
    if (!~DP) {
        // note that we cannot request any left fishes here.
        DP = noreq(i+1, n);  // if we don't request ANY fish here, just go up to max 

        ll sm = 0;
        F(covering, len, n) {
            sm += grid[i][covering];
            DP = max(DP, sm + req(i+1, covering + 1));
        }
    }   
    return DP;
}

long long max_weights(int N, int M, std::vector<int> X, std::vector<int> Y,
                      std::vector<int> W) {
    ll rans;

    if (N <= 300) {
        memset(dp1, -1, sizeof dp1);
        memset(dp2, -1, sizeof dp2);
        
        n = N;
        memset(grid, 0, sizeof grid);
        F(i, 0, M) grid[X[i]][Y[i]] = W[i];
        
        rans = noreq(0, 0);          
    }
    constexpr ll DEBUG = 0;
    if (N <= 300 and !DEBUG) return rans;

    bool case1 = 1;
    bool case2 = 1;
    bool case3 = 1;
    F(i, 0, M) case1 &= X[i]%2 == 0;
    F(i, 0, M) case2 &= X[i] <= 1;
    F(i, 0, M) case3 &= Y[i] == 0;
    
    if (case1) {
        return accumulate(A(W), 0ll);
    } else if (case2) {
        ll c[2] = {};
        map<pl, ll> points;
        F(i, 0, M) {
            c[X[i]] += W[i];
            points[{X[i], Y[i]}] = W[i];
        }
        
        if (N == 2) {
            return max(c[0], c[1]);
        }
        ll tans = max(c[0], c[1]);
        ll tsum = c[1];
        F(i, 0, N) {
            tsum -= points[{1, i}];
            tsum += points[{0, i}];
            tans = max(tans, tsum);
        }

        return tans;
    } else if (case3) {
        vl grid(n);
        F(i, 0, M) grid[X[i]] = W[i];
        vector<vl> dp(n+10, vl(3, -1));
        auto rec = [&](auto &&self, ll i, ll f) -> ll {
            if (i > n) return -1e18;
            if (i >= n) return 0;
            auto &DP = dp[i][f];
            if (!~DP) {
                DP = self(self, i+1, 1);
                if (f) DP = max(DP, grid[i] + self(self, i+1, 0));
                DP = max(DP, grid[i] + self(self, i+2, 0));
            }
            return DP;
        };
        return rec(rec, 0, 0);
    }

    return -1;
}
# Verdict Execution time Memory Grader output
1 Correct 18 ms 2136 KB Output is correct
2 Correct 22 ms 2652 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 70 ms 7272 KB Output is correct
6 Correct 71 ms 7248 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2648 KB Output is correct
2 Correct 112 ms 15440 KB Output is correct
3 Correct 140 ms 21076 KB Output is correct
4 Correct 19 ms 3676 KB Output is correct
5 Correct 23 ms 4436 KB Output is correct
6 Correct 1 ms 2652 KB Output is correct
7 Correct 1 ms 2652 KB Output is correct
8 Correct 1 ms 2652 KB Output is correct
9 Correct 1 ms 2652 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 67 ms 14812 KB Output is correct
13 Correct 82 ms 16984 KB Output is correct
14 Correct 69 ms 14932 KB Output is correct
15 Correct 103 ms 16724 KB Output is correct
16 Correct 87 ms 14888 KB Output is correct
17 Correct 74 ms 16468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Runtime error 1 ms 348 KB Execution killed with signal 11
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2652 KB Output is correct
2 Correct 1 ms 2652 KB Output is correct
3 Correct 1 ms 2652 KB Output is correct
4 Correct 1 ms 2652 KB Output is correct
5 Correct 1 ms 2652 KB Output is correct
6 Correct 1 ms 2652 KB Output is correct
7 Correct 1 ms 2652 KB Output is correct
8 Correct 1 ms 2652 KB Output is correct
9 Correct 42 ms 2652 KB Output is correct
10 Correct 325 ms 2824 KB Output is correct
11 Correct 42 ms 2652 KB Output is correct
12 Correct 325 ms 2652 KB Output is correct
13 Correct 6 ms 2652 KB Output is correct
14 Correct 328 ms 2652 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2652 KB Output is correct
2 Correct 1 ms 2652 KB Output is correct
3 Correct 1 ms 2652 KB Output is correct
4 Correct 1 ms 2652 KB Output is correct
5 Correct 1 ms 2652 KB Output is correct
6 Correct 1 ms 2652 KB Output is correct
7 Correct 1 ms 2652 KB Output is correct
8 Correct 1 ms 2652 KB Output is correct
9 Correct 42 ms 2652 KB Output is correct
10 Correct 325 ms 2824 KB Output is correct
11 Correct 42 ms 2652 KB Output is correct
12 Correct 325 ms 2652 KB Output is correct
13 Correct 6 ms 2652 KB Output is correct
14 Correct 328 ms 2652 KB Output is correct
15 Correct 326 ms 2648 KB Output is correct
16 Correct 7 ms 2652 KB Output is correct
17 Correct 340 ms 3880 KB Output is correct
18 Correct 339 ms 3676 KB Output is correct
19 Correct 334 ms 3836 KB Output is correct
20 Correct 334 ms 3676 KB Output is correct
21 Correct 334 ms 3832 KB Output is correct
22 Correct 345 ms 4700 KB Output is correct
23 Correct 327 ms 2980 KB Output is correct
24 Correct 330 ms 3420 KB Output is correct
25 Correct 324 ms 2792 KB Output is correct
26 Correct 327 ms 2960 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2652 KB Output is correct
2 Correct 1 ms 2652 KB Output is correct
3 Correct 1 ms 2652 KB Output is correct
4 Correct 1 ms 2652 KB Output is correct
5 Correct 1 ms 2652 KB Output is correct
6 Correct 1 ms 2652 KB Output is correct
7 Correct 1 ms 2652 KB Output is correct
8 Correct 1 ms 2652 KB Output is correct
9 Correct 42 ms 2652 KB Output is correct
10 Correct 325 ms 2824 KB Output is correct
11 Correct 42 ms 2652 KB Output is correct
12 Correct 325 ms 2652 KB Output is correct
13 Correct 6 ms 2652 KB Output is correct
14 Correct 328 ms 2652 KB Output is correct
15 Correct 326 ms 2648 KB Output is correct
16 Correct 7 ms 2652 KB Output is correct
17 Correct 340 ms 3880 KB Output is correct
18 Correct 339 ms 3676 KB Output is correct
19 Correct 334 ms 3836 KB Output is correct
20 Correct 334 ms 3676 KB Output is correct
21 Correct 334 ms 3832 KB Output is correct
22 Correct 345 ms 4700 KB Output is correct
23 Correct 327 ms 2980 KB Output is correct
24 Correct 330 ms 3420 KB Output is correct
25 Correct 324 ms 2792 KB Output is correct
26 Correct 327 ms 2960 KB Output is correct
27 Incorrect 1 ms 548 KB 1st lines differ - on the 1st token, expected: '2999', found: '-1'
28 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Runtime error 1 ms 348 KB Execution killed with signal 11
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 18 ms 2136 KB Output is correct
2 Correct 22 ms 2652 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 70 ms 7272 KB Output is correct
6 Correct 71 ms 7248 KB Output is correct
7 Correct 1 ms 2648 KB Output is correct
8 Correct 112 ms 15440 KB Output is correct
9 Correct 140 ms 21076 KB Output is correct
10 Correct 19 ms 3676 KB Output is correct
11 Correct 23 ms 4436 KB Output is correct
12 Correct 1 ms 2652 KB Output is correct
13 Correct 1 ms 2652 KB Output is correct
14 Correct 1 ms 2652 KB Output is correct
15 Correct 1 ms 2652 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 67 ms 14812 KB Output is correct
19 Correct 82 ms 16984 KB Output is correct
20 Correct 69 ms 14932 KB Output is correct
21 Correct 103 ms 16724 KB Output is correct
22 Correct 87 ms 14888 KB Output is correct
23 Correct 74 ms 16468 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
25 Runtime error 1 ms 348 KB Execution killed with signal 11
26 Halted 0 ms 0 KB -