/*
There is a simple solution with upper bound on the time equal to O(MAX * log(log(MAX)) * log(MAX)) with DP and maintaining a heap. Probably the actual complexity is smaller.
Unfortunately this was too slow, but we can notice that there is monotonicity in the answers and so if at each step we remove the largest number of people we will have an optimal strategy.
This also means we can remove the heap from the dp and just find the largest transition.
*/
#include <bits/stdc++.h>
#define endl '\n'
//#pragma GCC optimize ("O3")
//#pragma GCC target ("sse4")
#define SZ(x) ((int)x.size())
#define ALL(V) V.begin(), V.end()
#define L_B lower_bound
#define U_B upper_bound
#define pb push_back
using namespace std;
template<class T, class T2> inline int chkmax(T &x, const T2 &y) { return x < y ? x = y, 1 : 0; }
template<class T, class T2> inline int chkmin(T &x, const T2 &y) { return x > y ? x = y, 1 : 0; }
const int MAXN = (1 << 20);
const int B = (int)1e7 + 42;
const int inf = B + 42;
int n, q;
int dp[B + 42];
int a[MAXN], trans[B + 42];
void read()
{
cin >> n >> q;
for(int i = 0; i < n; i++)
cin >> a[i];
}
void solve()
{
for(int i = 0; i < a[n - 1]; i++) dp[i] = 1;
for(int i = a[n - 1]; i <= B; i++) dp[i] = inf;
for(int i = 0; i < n; i++)
for(int j = a[i] - 1; j <= B; j += a[i])
trans[j] = a[i] - 1;
for(int i = B; i >= 0; i--)
chkmax(trans[i], trans[i + 1] - 1);
for(int d = a[n - 1]; d <= B; d++)
chkmin(dp[d], 1 + dp[d - trans[d]]);
while(q--)
{
int x;
cin >> x;
if(dp[x] == inf) cout << "oo" << endl;
else cout << dp[x] << endl;
}
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
read();
solve();
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
116 ms |
78584 KB |
Output is correct |
2 |
Correct |
154 ms |
78844 KB |
Output is correct |
3 |
Correct |
127 ms |
78872 KB |
Output is correct |
4 |
Correct |
111 ms |
78872 KB |
Output is correct |
5 |
Correct |
144 ms |
78940 KB |
Output is correct |
6 |
Correct |
111 ms |
78940 KB |
Output is correct |
7 |
Correct |
134 ms |
78940 KB |
Output is correct |
8 |
Correct |
128 ms |
78940 KB |
Output is correct |
9 |
Correct |
167 ms |
78940 KB |
Output is correct |
10 |
Correct |
186 ms |
78940 KB |
Output is correct |
11 |
Correct |
181 ms |
78940 KB |
Output is correct |
12 |
Correct |
108 ms |
78940 KB |
Output is correct |
13 |
Correct |
320 ms |
78940 KB |
Output is correct |
14 |
Correct |
298 ms |
78940 KB |
Output is correct |
15 |
Correct |
139 ms |
79092 KB |
Output is correct |
16 |
Correct |
145 ms |
79092 KB |
Output is correct |
17 |
Correct |
159 ms |
79092 KB |
Output is correct |
18 |
Correct |
115 ms |
79188 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
137 ms |
79188 KB |
Output is correct |
2 |
Correct |
138 ms |
79264 KB |
Output is correct |
3 |
Correct |
415 ms |
79264 KB |
Output is correct |
4 |
Correct |
175 ms |
79264 KB |
Output is correct |
5 |
Correct |
280 ms |
79264 KB |
Output is correct |
6 |
Correct |
144 ms |
79264 KB |
Output is correct |
7 |
Correct |
141 ms |
79264 KB |
Output is correct |
8 |
Correct |
175 ms |
79264 KB |
Output is correct |
9 |
Correct |
329 ms |
79264 KB |
Output is correct |
10 |
Correct |
417 ms |
79360 KB |
Output is correct |
11 |
Incorrect |
410 ms |
79360 KB |
Output isn't correct |
12 |
Correct |
222 ms |
79360 KB |
Output is correct |
13 |
Correct |
118 ms |
79360 KB |
Output is correct |
14 |
Correct |
174 ms |
79360 KB |
Output is correct |
15 |
Correct |
329 ms |
79360 KB |
Output is correct |
16 |
Correct |
124 ms |
79360 KB |
Output is correct |
17 |
Correct |
286 ms |
79360 KB |
Output is correct |
18 |
Correct |
327 ms |
79360 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
275 ms |
79420 KB |
Output is correct |
2 |
Correct |
349 ms |
79444 KB |
Output is correct |
3 |
Correct |
371 ms |
79768 KB |
Output is correct |
4 |
Incorrect |
217 ms |
80276 KB |
Output isn't correct |
5 |
Incorrect |
173 ms |
80604 KB |
Output isn't correct |
6 |
Correct |
321 ms |
80960 KB |
Output is correct |
7 |
Correct |
313 ms |
81128 KB |
Output is correct |
8 |
Correct |
340 ms |
81128 KB |
Output is correct |
9 |
Correct |
315 ms |
81128 KB |
Output is correct |
10 |
Correct |
226 ms |
81128 KB |
Output is correct |
11 |
Incorrect |
206 ms |
81128 KB |
Output isn't correct |
12 |
Correct |
262 ms |
81128 KB |
Output is correct |
13 |
Correct |
329 ms |
81936 KB |
Output is correct |
14 |
Correct |
194 ms |
82864 KB |
Output is correct |
15 |
Incorrect |
272 ms |
82864 KB |
Output isn't correct |
16 |
Correct |
328 ms |
82864 KB |
Output is correct |
17 |
Correct |
336 ms |
82864 KB |
Output is correct |
18 |
Correct |
432 ms |
82864 KB |
Output is correct |
19 |
Incorrect |
137 ms |
82864 KB |
Output isn't correct |
20 |
Correct |
418 ms |
83100 KB |
Output is correct |
21 |
Incorrect |
255 ms |
84104 KB |
Output isn't correct |
22 |
Correct |
415 ms |
84708 KB |
Output is correct |
23 |
Correct |
191 ms |
84708 KB |
Output is correct |
24 |
Correct |
160 ms |
84708 KB |
Output is correct |
25 |
Correct |
296 ms |
85064 KB |
Output is correct |
26 |
Incorrect |
269 ms |
85596 KB |
Output isn't correct |
27 |
Correct |
459 ms |
86056 KB |
Output is correct |
28 |
Incorrect |
151 ms |
86056 KB |
Output isn't correct |
29 |
Correct |
426 ms |
86776 KB |
Output is correct |
30 |
Correct |
372 ms |
87288 KB |
Output is correct |
31 |
Correct |
196 ms |
87288 KB |
Output is correct |
32 |
Incorrect |
212 ms |
87288 KB |
Output isn't correct |
33 |
Incorrect |
141 ms |
87288 KB |
Output isn't correct |
34 |
Correct |
304 ms |
87288 KB |
Output is correct |
35 |
Incorrect |
161 ms |
87288 KB |
Output isn't correct |
36 |
Correct |
399 ms |
87916 KB |
Output is correct |
37 |
Incorrect |
155 ms |
87916 KB |
Output isn't correct |
38 |
Correct |
326 ms |
88188 KB |
Output is correct |
39 |
Correct |
168 ms |
88188 KB |
Output is correct |
40 |
Correct |
298 ms |
88712 KB |
Output is correct |
41 |
Correct |
250 ms |
88980 KB |
Output is correct |
42 |
Correct |
377 ms |
89492 KB |
Output is correct |