Submission #90476

#TimeUsernameProblemLanguageResultExecution timeMemory
90476radoslav11Brunhilda’s Birthday (BOI13_brunhilda)C++14
1.11 / 100
1094 ms263168 KiB
/* There is a simple solution with upper bound on the time equal to O(MAX * log(log(MAX)) * log(MAX)) with DP and maintaining a heap. Probably the actual complexity is smaller. */ #include <bits/stdc++.h> #define endl '\n' //#pragma GCC optimize ("O3") //#pragma GCC target ("sse4") #define SZ(x) ((int)x.size()) #define ALL(V) V.begin(), V.end() #define L_B lower_bound #define U_B upper_bound #define pb push_back using namespace std; template<class T, class T2> inline int chkmax(T &x, const T2 &y) { return x < y ? x = y, 1 : 0; } template<class T, class T2> inline int chkmin(T &x, const T2 &y) { return x > y ? x = y, 1 : 0; } const int MAXN = (1 << 20); const int B = (int)1e7 + 42; const int inf = B + 42; int n, q; int dp[B + 42], cnt[inf + 42]; int a[MAXN]; void read() { cin >> n >> q; for(int i = 0; i < n; i++) cin >> a[i]; } forward_list<int> li[B + 42]; priority_queue<int, vector<int>, greater<int> > Q; int last[MAXN]; void fix() { while(!Q.empty() && cnt[Q.top()]) { cnt[Q.top()]--; Q.pop(); } } void solve() { for(int i = 0; i < a[n - 1]; i++) dp[i] = 1; for(int i = a[n - 1]; i <= B; i++) dp[i] = inf; for(int i = 0; i < n; i++) { for(int j = 0; j <= B; j += a[i]) if(dp[j] != 1) li[j].push_front(i); } for(int i = 0; i < n - 1; i++) Q.push(1), last[i] = 1; for(int d = a[n - 1]; d <= B; d++) { for(int i: li[d]) cnt[last[i]]++; fix(); if(!Q.empty()) chkmin(dp[d], Q.top() + 1); for(int i: li[d]) { Q.push(dp[d]); last[i] = dp[d]; } } while(q--) { int x; cin >> x; if(dp[x] == inf) cout << "oo" << endl; else cout << dp[x] << endl; } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); read(); solve(); return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...