#include <bits/stdc++.h>
/*
Consider the problem
Give n integers a[1], ..., a[n]
and another n integers b[1], ..., b[n]
Find permutations of (1, ..., n), p and q
such that |a[p[1]] - b[q[1]]| + ... + |a[p[n]] - b[q[n]]|
is minimum
Solution:
Sort a and b
Thus, the elements which are originally to the left of the interval [L, R]
should have final positions to the left to
final positions of the elements which are originally to the right of the interval [L, R]
*/
template<class A, class B>
bool maximize(A &a, const B& b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template<class A, class B>
bool minimize(A &a, const B& b) {
if (a > b) {
a = b;
return true;
}
return false;
}
using namespace std;
constexpr int MAX_N = 102, MAX_K = 1E4 + 4, INF = 0X3F3F3F3F, NINF = 0XC0C0C0C0;
int result = INF, N, L, R, K, A[MAX_N], leftCost[MAX_N][MAX_K], rightCost[MAX_N][MAX_K], newCost[MAX_N][MAX_K];
signed main() {
#ifdef LOCAL
freopen("input.INP", "r", stdin);
#endif // LOCAL
cin.tie(0) -> sync_with_stdio(0);
cout.tie(0);
cin >> N >> L >> R >> K;
for (int i = 1; i <= N; ++i)
cin >> A[i];
for (int j = 0, i, k, d; j < L; ++j) {
for (i = L; i <= R; ++i)
for (k = 0; k <= K; ++k) {
newCost[i][k] = newCost[i - 1][k] + A[i];
if (j >= 1) {
d = i - j;
minimize(newCost[i][k], leftCost[i][k]);
if (k >= d)
minimize(newCost[i][k], leftCost[i - 1][k - d] + A[j]);
}
}
for (i = L; i <= R; ++i)
for (k = 0; k <= K; ++k)
leftCost[i][k] = newCost[i][k];
}
for (int j = N + 1, i, k, d; j > R; --j) {
for (i = R; i >= L; --i)
for (k = 0; k <= K; ++k) {
newCost[i][k] = newCost[i + 1][k] + A[i];
if (j <= N) {
d = j - i;
minimize(newCost[i][k], rightCost[i][k]);
if (k >= d)
minimize(newCost[i][k], rightCost[i + 1][k - d] + A[j]);
}
}
for (i = R; i >= L; --i)
for (k = 0; k <= K; ++k)
rightCost[i][k] = newCost[i][k];
}
minimize(result, min(leftCost[R][K], rightCost[L][K]));
for (int i = L, k; i < R; ++i)
for (k = 0; k <= K; ++k)
minimize(result, leftCost[i][k] + rightCost[i + 1][K - k]);
cout << result << '\n';
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
6488 KB |
Output is correct |
2 |
Correct |
2 ms |
8540 KB |
Output is correct |
3 |
Correct |
2 ms |
10740 KB |
Output is correct |
4 |
Correct |
2 ms |
10600 KB |
Output is correct |
5 |
Correct |
1 ms |
10600 KB |
Output is correct |
6 |
Correct |
1 ms |
10720 KB |
Output is correct |
7 |
Correct |
2 ms |
8796 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
6488 KB |
Output is correct |
2 |
Correct |
2 ms |
8540 KB |
Output is correct |
3 |
Correct |
2 ms |
10740 KB |
Output is correct |
4 |
Correct |
2 ms |
10600 KB |
Output is correct |
5 |
Correct |
1 ms |
10600 KB |
Output is correct |
6 |
Correct |
1 ms |
10720 KB |
Output is correct |
7 |
Correct |
2 ms |
8796 KB |
Output is correct |
8 |
Correct |
1 ms |
4444 KB |
Output is correct |
9 |
Correct |
1 ms |
4440 KB |
Output is correct |
10 |
Correct |
1 ms |
4700 KB |
Output is correct |
11 |
Correct |
2 ms |
4696 KB |
Output is correct |
12 |
Correct |
1 ms |
6748 KB |
Output is correct |
13 |
Correct |
19 ms |
5464 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
6488 KB |
Output is correct |
2 |
Correct |
2 ms |
8540 KB |
Output is correct |
3 |
Correct |
2 ms |
10740 KB |
Output is correct |
4 |
Correct |
2 ms |
10600 KB |
Output is correct |
5 |
Correct |
1 ms |
10600 KB |
Output is correct |
6 |
Correct |
1 ms |
10720 KB |
Output is correct |
7 |
Correct |
2 ms |
8796 KB |
Output is correct |
8 |
Correct |
1 ms |
4444 KB |
Output is correct |
9 |
Correct |
1 ms |
4440 KB |
Output is correct |
10 |
Correct |
1 ms |
4700 KB |
Output is correct |
11 |
Correct |
2 ms |
4696 KB |
Output is correct |
12 |
Correct |
1 ms |
6748 KB |
Output is correct |
13 |
Correct |
19 ms |
5464 KB |
Output is correct |
14 |
Correct |
1 ms |
4696 KB |
Output is correct |
15 |
Correct |
1 ms |
4444 KB |
Output is correct |
16 |
Correct |
1 ms |
4440 KB |
Output is correct |
17 |
Correct |
1 ms |
4444 KB |
Output is correct |
18 |
Correct |
1 ms |
4440 KB |
Output is correct |
19 |
Correct |
12 ms |
5468 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
6488 KB |
Output is correct |
2 |
Correct |
2 ms |
8540 KB |
Output is correct |
3 |
Correct |
2 ms |
10740 KB |
Output is correct |
4 |
Correct |
2 ms |
10600 KB |
Output is correct |
5 |
Correct |
1 ms |
10600 KB |
Output is correct |
6 |
Correct |
1 ms |
10720 KB |
Output is correct |
7 |
Correct |
2 ms |
8796 KB |
Output is correct |
8 |
Correct |
1 ms |
4444 KB |
Output is correct |
9 |
Correct |
1 ms |
4440 KB |
Output is correct |
10 |
Correct |
1 ms |
4700 KB |
Output is correct |
11 |
Correct |
2 ms |
4696 KB |
Output is correct |
12 |
Correct |
1 ms |
6748 KB |
Output is correct |
13 |
Correct |
19 ms |
5464 KB |
Output is correct |
14 |
Correct |
1 ms |
4696 KB |
Output is correct |
15 |
Correct |
1 ms |
4444 KB |
Output is correct |
16 |
Correct |
1 ms |
4440 KB |
Output is correct |
17 |
Correct |
1 ms |
4444 KB |
Output is correct |
18 |
Correct |
1 ms |
4440 KB |
Output is correct |
19 |
Correct |
12 ms |
5468 KB |
Output is correct |
20 |
Correct |
1 ms |
2652 KB |
Output is correct |
21 |
Correct |
1 ms |
4444 KB |
Output is correct |
22 |
Correct |
1 ms |
6492 KB |
Output is correct |
23 |
Correct |
2 ms |
2396 KB |
Output is correct |
24 |
Correct |
4 ms |
8796 KB |
Output is correct |
25 |
Correct |
44 ms |
10324 KB |
Output is correct |