Submission #900489

#TimeUsernameProblemLanguageResultExecution timeMemory
900489shmaxDuathlon (APIO18_duathlon)C++14
0 / 100
991 ms1048576 KiB
/* * powered by ANDRIY POPYK * in honor of MYSELF and SEGMENT DECOMPOSITION and N^(log(N)) and (Harry Potter and the Methods of Rationality) and Monkie D. Luffy */ #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> //#pragma GCC optimize("O3") //#pragma GCC target("avx,avx2,fma") //#pragma GCC optimization ("unroll-loops") //#pragma GCC target("avx,avx2,sse,sse2,sse3,sse4,popcnt") using namespace std; using namespace __gnu_pbds; #define int long long #define float long double #define elif else if #define endl "\n" #define mod 1000000007 #define pi acos(-1) #define eps 0.000000001 #define inf 1000'000'000'000'000'000LL #define FIXED(a) cout << fixed << setprecision(a) #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define time_init auto start = std::chrono::high_resolution_clock::now() #define time_report \ auto end = std::chrono::high_resolution_clock::now(); \ std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << " ms" << endl #define debug(x) \ { cerr << #x << " = " << x << endl; } #define len(x) (int) x.size() #define sqr(x) ((x) * (x)) #define cube(x) ((x) * (x) * (x)) #define bit(x, i) (((x) >> (i)) & 1) #define set_bit(x, i) ((x) | (1LL << (i))) #define clear_bit(x, i) ((x) & (~(1LL << (i)))) #define toggle_bit(x, i) ((x) ^ (1LL << (i))) #define low_bit(x) ((x) & (-(x))) #define count_bit(x) __builtin_popcountll(x) #define srt(x) sort(all(x)) #define rsrt(x) sort(rall(x)) #define mp make_pair #define maxel(x) (*max_element(all(x))) #define minel(x) (*min_element(all(x))) #define maxelpos(x) (max_element(all(x)) - x.begin()) #define minelpos(x) (min_element(all(x)) - x.begin()) #define sum(x) (accumulate(all(x), 0LL)) #define product(x) (accumulate(all(x), 1LL, multiplies<int>())) #define gcd __gcd #define lcm(a, b) ((a) / gcd(a, b) * (b)) #define rev(x) (reverse(all(x))) #define shift_left(x, k) (rotate(x.begin(), x.begin() + k, x.end())) #define shift_right(x, k) (rotate(x.rbegin(), x.rbegin() + k, x.rend())) #define is_sorted(x) (is_sorted_until(all(x)) == x.end()) #define is_even(x) (((x) &1) == 0) #define is_odd(x) (((x) &1) == 1) #define pow2(x) (1LL << (x)) struct custom_hash { static uint64_t splitmix64(uint64_t x) { // http://xorshift.di.unimi.it/splitmix64.c x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } size_t operator()(uint64_t x) const { static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); } }; template<typename T> using min_heap = priority_queue<T, vector<T>, greater<T>>; template<typename T> using max_heap = priority_queue<T, vector<T>, less<T>>; template<typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; template<typename T> using ordered_multiset = tree<T, null_type, less_equal<T>, rb_tree_tag, tree_order_statistics_node_update>; template<typename T> using matrix = vector<vector<T>>; template<typename T> using graph = vector<vector<T>>; using hashmap = gp_hash_table<int, int, custom_hash>; template<typename T> vector<T> vect(int n, T val) { return vector<T>(n, val); } template<typename T> vector<vector<T>> vect(int n, int m, T val) { return vector<vector<T>>(n, vector<T>(m, val)); } template<typename T> vector<vector<vector<T>>> vect(int n, int m, int k, T val) { return vector<vector<vector<T>>>(n, vector<vector<T>>(m, vector<T>(k, val))); } template<typename T> vector<vector<vector<vector<T>>>> vect(int n, int m, int k, int l, T val) { return vector<vector<vector<vector<T>>>>(n, vector<vector<vector<T>>>(m, vector<vector<T>>(k, vector<T>(l, val)))); } template<typename T> matrix<T> new_matrix(int n, int m, T val) { return matrix<T>(n, vector<T>(m, val)); } template<typename T> graph<T> new_graph(int n) { return graph<T>(n); } template<class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template<class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } using i8 = int8_t; using i16 = int16_t; using i32 = int32_t; using i64 = int64_t; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; template<typename T> using vec = vector<T>; using pII = pair<int, int>; template<typename T> using enumerated = pair<T, int>; struct BlockCutTree { public: graph<int> g; int timer, n; vec<int> fup, tin; vec<bool> used; vec<vec<pII>> edge_components; vec<int> components; vec<int> comp_vertices; vec<int> cut_points; vec<bool> is_cut_point; stack<pII> buffer; int component_cnt; void dfs(int v, int p) { tin[v] = fup[v] = timer++; used[v] = true; bool is_cut = false; int child_cnt = 0; for (auto u: g[v]) { if (u == p) continue; if (!used[u]) { child_cnt++; buffer.emplace(v, u); dfs(u, v); if (fup[u] >= tin[v]) { is_cut = true; edge_components.emplace_back(); while (true) { auto [a, b] = buffer.top(); buffer.pop(); edge_components.back().emplace_back(a, b); if (a == v && b == u) { break; } } } chmin(fup[v], fup[u]); } else { chmin(fup[v], tin[u]); if (tin[u] < tin[v]) { buffer.emplace(v, u); } } } if (p == -1) { is_cut = child_cnt > 1; } if (is_cut) { cut_points.push_back(v); is_cut_point[v] = true; } } void build_components() { for (int i = 0; i < n; ++i) { if (!used[i]) { dfs(i, -1); } } components = vec<int>(n); component_cnt = 0; for (auto cp: cut_points) { components[cp] = component_cnt++; } for (auto &ec: edge_components) { for (auto [u, v]: ec) { if (!is_cut_point[u]) components[u] = component_cnt; if (!is_cut_point[v]) components[v] = component_cnt; } // if (was) component_cnt++; } comp_vertices.resize(component_cnt); for (int i = 0; i < n; ++i) { comp_vertices[components[i]]++; } } graph<int> bc_tree; void build_tree() { bc_tree = graph<int>(component_cnt); set<pair<int, int>> bc_tree_edges; int id = len(cut_points) - 1; for (const auto &eg: edge_components) { id++; for (auto [u, v]: eg) { if (is_cut_point[u]) { // bc_tree_edges[components[u]].insert(id); // bc_tree_edges[id].insert(components[u]); int v_u = components[u]; int v_v = id; if (v_u > v_v) { swap(v_u, v_v); } bc_tree_edges.emplace(v_u, v_v); } if (is_cut_point[v]) { int v_u = components[v]; int v_v = id; if (v_u > v_v) { swap(v_u, v_v); } bc_tree_edges.emplace(v_u, v_v); } } } // for (int i = 0; i < component_cnt; ++i) { // for (auto to: bc_tree_edges[i]) { // bc_tree[i].push_back(to); // } // } for (auto [u, v]: bc_tree_edges) { bc_tree[u].push_back(v); bc_tree[v].push_back(u); } } BlockCutTree(graph<int> &g) : g(g) { n = len(g); timer = 0; fup = tin = vec<int>(n); used = vec<bool>(n); is_cut_point = vec<bool>(n); } void print() { set<pII> edges; for (int i = 0; i < component_cnt; ++i) { for (auto to: bc_tree[i]) { if (edges.count({i, to}) or edges.count({to, i})) { continue; } edges.emplace(i, to); } } cout << len(edges) << endl; for (auto [u, v]: edges) { cout << u + 1 << " " << v + 1 << endl; } } }; signed main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); i64 n, m; cin >> n >> m; graph<int> g(n); for (int i = 0; i < m; ++i) { int u, v; cin >> u >> v, --u, --v; g[u].push_back(v); g[v].push_back(u); } // int all = 0; // vec<int> sizes(n, 0); // vec<bool> was(n, false); function<int(int, int)> calc_cur_size = [&](int v, int p) { int sum = 1; for (auto u: g[v]) { if (u != p) sum += calc_cur_size(u, v); } return sum; }; int ttn = n; /* function<void(int, int)> dfs = [&](int v, int p) { if (was[v]) return; was[v] = true; sizes[v] = 1; for (auto u: g[v]) { if (u == p) continue; dfs(u, v); sizes[v] += sizes[u]; } int top = ttn - sizes[v]; all += top * (sizes[v] - 1) * 2; for (auto u: g[v]) { if (u == p) continue; int tn = sizes[v] - 1 - sizes[u]; all += tn * sizes[u]; } }; */ BlockCutTree bct(g); bct.build_components(); bct.build_tree(); // bct.print(); // cout << endl; i64 all = 0; int dn = len(bct.bc_tree); vec<int> sizes(dn, 0); vec<bool> was(dn, false); function<void(int, int)> dfs = [&](int v, int p) { if (was[v]) return; was[v] = true; sizes[v] = bct.comp_vertices[v]; for (auto u: bct.bc_tree[v]) { if (u == p) continue; dfs(u, v); sizes[v] += sizes[u]; } if (bct.comp_vertices[v] >= 3) { int tc = bct.comp_vertices[v]; all += tc * (tc - 1) * (tc - 2); } if (bct.comp_vertices[v] >= 2) { int tc = bct.comp_vertices[v]; int top = ttn - sizes[v]; all += tc * (tc - 1) * top * 2; } int top = ttn - sizes[v]; int tc = bct.comp_vertices[v]; for (auto u: bct.bc_tree[v]) { if (u == p) continue; all += top * tc * sizes[u] * 2; all += tc * (tc - 1) * sizes[u] * 2; all += bct.comp_vertices[u] * (bct.comp_vertices[u] - 1) * tc; int dc = sizes[v] - sizes[u] - tc; all += tc * dc * sizes[u]; } }; for (int i = 0; i < n; i++) { if (!was[i]) { ttn = calc_cur_size(i, -1); dfs(i, -1); } } cout << all << endl; }

Compilation message (stderr)

count_triplets.cpp: In member function 'void BlockCutTree::dfs(long long int, long long int)':
count_triplets.cpp:174:30: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  174 |                         auto [a, b] = buffer.top();
      |                              ^
count_triplets.cpp: In member function 'void BlockCutTree::build_components()':
count_triplets.cpp:211:23: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  211 |             for (auto [u, v]: ec) {
      |                       ^
count_triplets.cpp: In member function 'void BlockCutTree::build_tree()':
count_triplets.cpp:235:23: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  235 |             for (auto [u, v]: eg) {
      |                       ^
count_triplets.cpp:261:19: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  261 |         for (auto [u, v]: bc_tree_edges) {
      |                   ^
count_triplets.cpp: In member function 'void BlockCutTree::print()':
count_triplets.cpp:286:19: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  286 |         for (auto [u, v]: edges) {
      |                   ^
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...