Submission #896995

# Submission time Handle Problem Language Result Execution time Memory
896995 2024-01-02T12:01:52 Z shmax One-Way Streets (CEOI17_oneway) C++14
100 / 100
174 ms 55308 KB
/*
 * powered by ANDRIY POPYK
 * in honor of MYSELF and SEGMENT DECOMPOSITION and N^(log(N)) and (Harry Potter and the Methods of Rationality) and Monkie D. Luffy
*/
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>

//#pragma GCC optimize("O3")
//#pragma GCC target("avx,avx2,fma")
//#pragma GCC optimization ("unroll-loops")
//#pragma GCC target("avx,avx2,sse,sse2,sse3,sse4,popcnt")

using namespace std;
using namespace __gnu_pbds;
#define int long long
#define float long double
#define elif else if
#define endl "\n"
#define mod 1000000007
#define pi acos(-1)
#define eps 0.000000001
#define inf 1000'000'000'000'000'000LL
#define FIXED(a) cout << fixed << setprecision(a)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define time_init auto start = std::chrono::high_resolution_clock::now()
#define time_report                                       \
    auto end = std::chrono::high_resolution_clock::now(); \
    std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << " ms" << endl
#define debug(x) \
    { cerr << #x << " = " << x << endl; }
#define len(x) (int) x.size()
#define sqr(x) ((x) * (x))
#define cube(x) ((x) * (x) * (x))
#define bit(x, i) (((x) >> (i)) & 1)
#define set_bit(x, i) ((x) | (1LL << (i)))
#define clear_bit(x, i) ((x) & (~(1LL << (i))))
#define toggle_bit(x, i) ((x) ^ (1LL << (i)))
#define low_bit(x) ((x) & (-(x)))
#define count_bit(x) __builtin_popcountll(x)
#define srt(x) sort(all(x))
#define rsrt(x) sort(rall(x))
#define mp make_pair
#define maxel(x) (*max_element(all(x)))
#define minel(x) (*min_element(all(x)))
#define maxelpos(x) (max_element(all(x)) - x.begin())
#define minelpos(x) (min_element(all(x)) - x.begin())
#define sum(x) (accumulate(all(x), 0LL))
#define product(x) (accumulate(all(x), 1LL, multiplies<int>()))
#define gcd __gcd
#define lcm(a, b) ((a) / gcd(a, b) * (b))
#define rev(x) (reverse(all(x)))
#define shift_left(x, k) (rotate(x.begin(), x.begin() + k, x.end()))
#define shift_right(x, k) (rotate(x.rbegin(), x.rbegin() + k, x.rend()))
#define is_sorted(x) (is_sorted_until(all(x)) == x.end())
#define is_even(x) (((x) &1) == 0)
#define is_odd(x) (((x) &1) == 1)
#define pow2(x) (1LL << (x))

struct custom_hash {
    static uint64_t splitmix64(uint64_t x) {
        // http://xorshift.di.unimi.it/splitmix64.c
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^ (x >> 31);
    }

    size_t operator()(uint64_t x) const {
        static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
        return splitmix64(x + FIXED_RANDOM);
    }
};

template<typename T>
using min_heap = priority_queue<T, vector<T>, greater<T>>;
template<typename T>
using max_heap = priority_queue<T, vector<T>, less<T>>;
template<typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T>
using ordered_multiset = tree<T, null_type, less_equal<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T>
using matrix = vector<vector<T>>;
template<typename T>
using graph = vector<vector<T>>;
using hashmap = gp_hash_table<int, int, custom_hash>;

template<typename T>
vector<T> vect(int n, T val) {
    return vector<T>(n, val);
}

template<typename T>
vector<vector<T>> vect(int n, int m, T val) {
    return vector<vector<T>>(n, vector<T>(m, val));
}

template<typename T>
vector<vector<vector<T>>> vect(int n, int m, int k, T val) {
    return vector<vector<vector<T>>>(n, vector<vector<T>>(m, vector<T>(k, val)));
}

template<typename T>
vector<vector<vector<vector<T>>>> vect(int n, int m, int k, int l, T val) {
    return vector<vector<vector<vector<T>>>>(n, vector<vector<vector<T>>>(m, vector<vector<T>>(k, vector<T>(l, val))));
}

template<typename T>
matrix<T> new_matrix(int n, int m, T val) {
    return matrix<T>(n, vector<T>(m, val));
}

template<typename T>
graph<T> new_graph(int n) {
    return graph<T>(n);
}

template<class T, class S>
inline bool chmax(T &a, const S &b) {
    return (a < b ? a = b, 1 : 0);
}

template<class T, class S>
inline bool chmin(T &a, const S &b) {
    return (a > b ? a = b, 1 : 0);
}

using i8 = int8_t;
using i16 = int16_t;
using i32 = int32_t;
using i64 = int64_t;
using i128 = __int128_t;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using u128 = __uint128_t;

template<typename T>
using vec = vector<T>;

using pII = pair<int, int>;
template<typename T>
using enumerated = pair<T, int>;

struct Bridges {
private:
    graph<pair<int, int>> g;
    vector<int> tin, fup;
    vector<bool> used;
    int timer;


    void build_dfs(int v, int p = -1, int edge_idx = -1) {
        used[v] = true;
        tin[v] = fup[v] = timer++;
        for (auto [u, id]: g[v]) {
            if (u == p) {
                continue;
            }
            if (used[u]) {
                fup[v] = min(fup[v], tin[u]);
            } else {
                build_dfs(u, v, id);
                fup[v] = min(fup[v], fup[u]);
            }
        }
        if (p != -1 and fup[v] > tin[p]) {
            is_bridge[edge_idx] = true;
            bridges.insert(edge_idx);
        }
    }

    void build_components_dfs(int v, int comp) {
        components[v] = comp;
        for (auto [u, id]: g[v]) {
            if (components[u] == -1 and !is_bridge[id]) {
                build_components_dfs(u, comp);
            }
        }
    }

public:
    set<int> bridges;
    vec<bool> is_bridge;
    vec<int> components;
    int components_count;
    graph<pair<int, int>> condensation;
    vec<pair<int, int>> edges;

    Bridges(graph<pII> &gt, int m) {
        g = gt;
        int idx = m;
        tin = fup = vector<int>(len(g));
        used = vector<bool>(len(g));
        timer = 0;
        is_bridge = vec<bool>(idx);
        for (int i = 0; i < len(g); ++i) {
            if (!used[i]) {
                build_dfs(i);
            }
        }
    }

    void build_components() {
        components = vec<int>(len(g), -1);
        components_count = 0;
        for (int i = 0; i < len(g); ++i) {
            if (components[i] == -1) {
                build_components_dfs(i, components_count++);
            }
        }
    }

    void build_condensation() {
        condensation = graph<pII>(components_count);
        vec<set<pair<int, int>>> edges_(components_count);
        for (int i = 0; i < len(g); ++i) {
            for (auto &to: g[i]) {
                if (components[i] != components[to.first]) {
                    edges_[components[i]].insert({components[to.first], to.second});
                }
            }
        }
        for (int i = 0; i < components_count; ++i) {
            for (auto &to: edges_[i]) {
                condensation[i].push_back(to);
            }
        }
    }

    void print_condensation() {
//        print edges of condensation
        for (int i = 0; i < components_count; ++i) {
            for (auto [u, id]: condensation[i]) {
                cout << i << " " << u << " " << id << endl;
            }
        }
    }
};

struct state {
public:
    int left_f, right_f;
    int left_s, right_s;

    state &operator=(state _val) {
        this->left_f = _val.left_f;
        this->right_f = _val.right_f;
        this->left_s = _val.left_s;
        this->right_s = _val.right_s;
        return *this;
    }
};
template<typename T>
struct option {
    T val;
    bool is_empty;

    option() : is_empty(true) {}

    option(T val) : val(val), is_empty(false) {}

    option<T> &operator=(T _val) {
        this->val = _val;
        this->is_empty = false;
        return *this;
    }

    option<T> &operator=(option<T> _val) {
        this->val = _val;
        this->is_empty = false;
        return *this;
    }

    T operator*() {
        if (is_empty) {
            throw runtime_error("option is none");
        }
        return val;
    }


    bool operator==(option<T> _val) {
        if (is_empty and _val.is_empty) {
            return true;
        }
        if (is_empty or _val.is_empty) {
            return false;
        }
        return val == _val.val;
    }

    bool operator!=(option<T> _val) {
        return !(*this == _val);
    }

    bool is_some() {
        return !is_empty;
    }

    bool is_none() {
        return is_empty;
    }
};

signed main() {
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    int n, m;
    cin >> n >> m;
    graph<pII> g(n);
    vec<pII> edges(m);
    for (int i = 0; i < m; ++i) {
        int v, u;
        cin >> v >> u;
        --v, --u;
        g[v].emplace_back(u, i);
        g[u].emplace_back(v, i);
        edges[i] = {v, u};
    }
    Bridges b(g, m);
    b.build_components();
    b.build_condensation();
    vec<char> ans(m,'B');
    for (int i = 0; i < m; i++) {
        if (!b.is_bridge[i]) {
            ans[i] = 'B';
        }
    }
    int p;
    cin >> p;
    vec<pair<int, int>> queries;
    while (p--) {
        int v, u;
        cin >> v >> u;
        --v, --u;
        v = b.components[v];
        u = b.components[u];
        queries.emplace_back(v, u);
    }
    int dn = b.components_count;
//    b.print_condensation();
    vec<int> alias(dn, -1);
    vec<pII> sub_tree(dn);
    int cnt = 0;
    function<void(int)> build_alias = [&](int v) {
        alias[v] = cnt++;
        sub_tree[v] = {alias[v], alias[v]};
        for (auto [u, id]: b.condensation[v]) {
            if (alias[u] == -1) {
                build_alias(u);
            }
        }
        sub_tree[v].second = cnt - 1;
    };


    vec<option<state>> dp(dn);

    vec<int> to_finish_left(dn);
    vec<int> to_finish_right(dn);
    vec<int> to_start_left(dn);
    vec<int> to_start_right(dn);
    for (int i = 0; i < dn; ++i) {
        if (alias[i] == -1) {
            build_alias(i);
        }
    }

    for (int i = 0; i < dn; i++) {
        to_finish_left[i] = to_finish_right[i] = to_start_left[i] = to_start_right[i] = alias[i];
    }

    for (auto [v, u]: queries) {
        chmin(to_finish_left[v], alias[u]);
        chmax(to_finish_right[v], alias[u]);
        chmin(to_start_left[u], alias[v]);
        chmax(to_start_right[u], alias[v]);
    }

    function<void(int, int, int)> dfs = [&](int v, int p, int id = -1) {
        if (dp[v].is_some())
            return;
        state cur = {to_finish_left[v], to_finish_right[v], to_start_left[v], to_start_right[v],};
        for (auto [u, uid]: b.condensation[v]) {
            if (u == p)
                continue;
            dfs(u, v, uid);
            if (dp[u].is_some()) {
                state s = *dp[u];
                chmin(cur.left_f, s.left_f);
                chmin(cur.left_s, s.left_s);
                chmax(cur.right_f, s.right_f);
                chmax(cur.right_s, s.right_s);
            }
        }
        dp[v] = cur;
        if (id != -1) {
            ans[id] = 'B';
            if (sub_tree[v].first > cur.left_f or sub_tree[v].second < cur.right_f) {
                if (b.components[edges[id].first] != p)
                    ans[id] = 'R';
                else
                    ans[id] = 'L';
            }
            if (sub_tree[v].first > cur.left_s or sub_tree[v].second < cur.right_s) {
                if (b.components[edges[id].first] != p)
                    ans[id] = 'L';
                else
                    ans[id] = 'R';
            }
        }
    };


    for (int i = 0; i < dn; ++i) {
        if (dp[i].is_none()) {
            dfs(i, -1, -1);
        }
    }
    for (int i = 0; i < m; ++i) {
        cout << ans[i];
    }


}

Compilation message

oneway.cpp: In member function 'void Bridges::build_dfs(long long int, long long int, long long int)':
oneway.cpp:158:19: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  158 |         for (auto [u, id]: g[v]) {
      |                   ^
oneway.cpp: In member function 'void Bridges::build_components_dfs(long long int, long long int)':
oneway.cpp:177:19: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  177 |         for (auto [u, id]: g[v]) {
      |                   ^
oneway.cpp: In member function 'void Bridges::print_condensation()':
oneway.cpp:236:23: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  236 |             for (auto [u, id]: condensation[i]) {
      |                       ^
oneway.cpp: In lambda function:
oneway.cpp:352:19: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  352 |         for (auto [u, id]: b.condensation[v]) {
      |                   ^
oneway.cpp: In function 'int main()':
oneway.cpp:377:15: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  377 |     for (auto [v, u]: queries) {
      |               ^
oneway.cpp: In lambda function:
oneway.cpp:388:19: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  388 |         for (auto [u, uid]: b.condensation[v]) {
      |                   ^
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 860 KB Output is correct
5 Correct 1 ms 860 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 1 ms 860 KB Output is correct
9 Correct 1 ms 464 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 860 KB Output is correct
5 Correct 1 ms 860 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 1 ms 860 KB Output is correct
9 Correct 1 ms 464 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 32 ms 13612 KB Output is correct
12 Correct 39 ms 15500 KB Output is correct
13 Correct 47 ms 18832 KB Output is correct
14 Correct 66 ms 26880 KB Output is correct
15 Correct 82 ms 29820 KB Output is correct
16 Correct 125 ms 49236 KB Output is correct
17 Correct 136 ms 50816 KB Output is correct
18 Correct 126 ms 49232 KB Output is correct
19 Correct 121 ms 52052 KB Output is correct
20 Correct 42 ms 16628 KB Output is correct
21 Correct 48 ms 16708 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 860 KB Output is correct
5 Correct 1 ms 860 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 1 ms 860 KB Output is correct
9 Correct 1 ms 464 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 32 ms 13612 KB Output is correct
12 Correct 39 ms 15500 KB Output is correct
13 Correct 47 ms 18832 KB Output is correct
14 Correct 66 ms 26880 KB Output is correct
15 Correct 82 ms 29820 KB Output is correct
16 Correct 125 ms 49236 KB Output is correct
17 Correct 136 ms 50816 KB Output is correct
18 Correct 126 ms 49232 KB Output is correct
19 Correct 121 ms 52052 KB Output is correct
20 Correct 42 ms 16628 KB Output is correct
21 Correct 48 ms 16708 KB Output is correct
22 Correct 144 ms 51032 KB Output is correct
23 Correct 154 ms 49412 KB Output is correct
24 Correct 174 ms 49604 KB Output is correct
25 Correct 154 ms 55308 KB Output is correct
26 Correct 156 ms 50632 KB Output is correct
27 Correct 141 ms 49496 KB Output is correct
28 Correct 25 ms 12240 KB Output is correct
29 Correct 56 ms 19400 KB Output is correct
30 Correct 51 ms 19440 KB Output is correct
31 Correct 58 ms 19740 KB Output is correct
32 Correct 106 ms 32200 KB Output is correct