Submission #895056

# Submission time Handle Problem Language Result Execution time Memory
895056 2023-12-29T11:22:56 Z boris_mihov Meetings 2 (JOI21_meetings2) C++17
100 / 100
2321 ms 39236 KB
#include <algorithm>
#include <iostream>
#include <numeric>
#include <cassert>
#include <vector>

typedef long long llong;
const int MAXN = 200000 + 10;
const int MOD = 1e9 + 7;

int n;
struct SegmentTree
{
    int tree[4 * MAXN];
    void update(int l, int r, int node, int queryPos, int queryVal)
    {
        if (l == r)
        {
            if (queryVal == 0) tree[node] = queryVal;
            else tree[node] = std::max(tree[node], queryVal);
            return;
        }

        int mid = (l + r) / 2;
        if (queryPos <= mid) update(l, mid, 2*node, queryPos, queryVal);
        else update(mid + 1, r, 2*node + 1, queryPos, queryVal);
        tree[node] = std::max(tree[2*node], tree[2*node + 1]);
    }

    int findMAX(int l, int r, int node, int queryL, int queryR)
    {
        if (queryL <= l && r <= queryR)
        {
            return tree[node];
        }

        int res = 0;
        int mid = (l + r) / 2;
        if (queryL <= mid) res = std::max(res, findMAX(l, mid, 2*node, queryL, queryR));
        if (mid + 1 <= queryR) res = std::max(res, findMAX(mid + 1, r, 2*node + 1, queryL, queryR));
        return res;
    }

    void reset(int l, int r, int node)
    {
        tree[node] = 0;
        if (l != r)
        {
            int mid = (l + r) / 2;
            if (tree[2*node] != 0)
            {
                reset(l, mid, 2*node);
            }

            if (tree[2*node + 1] != 0)
            {
                reset(mid + 1, r, 2*node + 1);
            }
        }
    }

    void update(int pos, int val)
    {
        update(1, n, 1, pos, val);
    }

    int findMAX(int l, int r)
    {
        return findMAX(1, n, 1, l, r);
    }

    void reset()
    {
        reset(1, n, 1);
    }
};

int in[MAXN];
int sz[MAXN];
int szC[MAXN];
int par[MAXN];
int dep[MAXN];
int out[MAXN];
int answer[MAXN];
SegmentTree tree;
std::vector <int> g[MAXN];
std::vector <int> c[MAXN];
int timer;

void buildDFS(int node, int p)
{
    par[node] = p;
    for (int &u : g[node])
    {
        if (u == par[node])
        {
            std::swap(u, g[node].back());
            break;
        }
    }
    
    in[node] = ++timer;
    sz[node] = 1;

    for (const int &u : g[node])
    {
        if (u == par[node])
        {
            continue;
        }

        buildDFS(u, node);
        sz[node] += sz[u];
    }

    out[node] = timer;
}

bool inSubtree(int x, int y)
{
    return in[y] <= in[x] && out[x] <= out[y];
}

int getSubtree(int node, int root)
{
    if (node == root)
    {
        return n;
    }

    if (!inSubtree(root, node))
    {
        return sz[node];
    }

    assert(g[node].size() >= 1 + (node != 1));
    int l = 0, r = g[node].size() - (node != 1), mid;
    while (l < r - 1)
    {
        mid = (l + r) / 2;
        if (in[root] < in[g[node][mid]]) r = mid;
        else l = mid;
    }
    
    assert(inSubtree(root, g[node][l]));
    return n - sz[g[node][l]];
}

int ans[MAXN];
bool vis[MAXN];
int output[MAXN];

void calcSZ(int node, int par)
{   
    szC[node] = 1;
    for (const int &u : g[node])
    {
        if (u == par || vis[u])
        {
            continue;
        }

        calcSZ(u, node);
        szC[node] += szC[u];
    }
}

int findCentroid(int node, int par, int size)
{
    for (const int &u : g[node])
    {
        if (u == par || vis[u])
        {
            continue;
        }

        if (szC[u] > size / 2)
        {
            return findCentroid(u, node, size);
        }
    }

    return node;
}

int decompose(int node, int d)
{
    calcSZ(node, 0);
    int cntr = findCentroid(node, 0, szC[node]);
    vis[cntr] = true;
    dep[cntr] = d;

    for (const int &u : g[cntr])
    {
        if (vis[u])
        {
            continue;
        }

        c[cntr].push_back(decompose(u, d + 1));
    }

    return cntr;
}

void checkDFS(int node, int par, int dist, int lvl, int centroid)
{
    int currSize = getSubtree(node, centroid);
    int centroidSize = std::min(currSize, getSubtree(centroid, node));
    ans[centroidSize] = std::max(ans[centroidSize], dist);

    int res = tree.findMAX(currSize, n);
    if (res != 0) ans[currSize] = std::max(ans[currSize], dist + res);

    for (const int &u : g[node])
    {
        if (dep[u] > lvl && u != par)
        {
            checkDFS(u, node, dist + 1, lvl, centroid);
        }
    }
}

void addDFS(int node, int par, int dist, int lvl, int centroid)
{
    int currSize = getSubtree(node, centroid);
    tree.update(currSize, dist);

    for (const int &u : g[node])
    {
        if (dep[u] > lvl && u != par)
        {
            addDFS(u, node, dist + 1, lvl, centroid);
        }
    }
}

void solveDFS(int node)
{
    for (const int &u : c[node])
    {
        solveDFS(u);
    }

    for (int idx = 0 ; idx < g[node].size() ; ++idx)
    {
        int u = g[node][idx];
        if (dep[u] < dep[node])
        {
            continue;
        }
        
        checkDFS(u, node, 1, dep[node], node);
        addDFS(u, node, 1, dep[node], node);
    }

    tree.reset();
    for (int idx = (int)g[node].size() - 1 ; idx >= 0 ; --idx)
    {
        int u = g[node][idx];
        if (dep[u] < dep[node])
        {
            continue;
        }
        
        checkDFS(u, node, 1, dep[node], node);
        addDFS(u, node, 1, dep[node], node);
    }

    tree.reset();
}

void solve()
{
    buildDFS(1, 0);
    int root = decompose(1, 1);
    solveDFS(root);

    for (int i = n - 1 ; i >= 1 ; --i)
    {
        ans[i] = std::max(ans[i], ans[i + 1]);
    }

    for (int i = 1 ; i <= n ; ++i)
    {
        if (i & 1) output[i] = 1;
        else output[i] = ans[i / 2] + 1;
    }
}

void print()
{
    for (int i = 1 ; i <= n ; ++i)
    {
        std::cout << output[i] << '\n';
    }
}

void input()
{
    std::cin >> n;
    for (int i = 1 ; i < n ; ++i)
    {
        int u, v;
        std::cin >> u >> v;
        g[u].push_back(v);
        g[v].push_back(u);
    }
}

void fastIOI()
{
    std::ios_base :: sync_with_stdio(0);
    std::cout.tie(nullptr);
    std::cin.tie(nullptr);
}

int main()
{
    fastIOI();
    input();
    solve();
    print();

    return 0;
}

/*
14 13
10 14
3 10
14 13
1 3
3 5
3 11
12 14
14 6
11 8
2 3
7 8
9 7
1 4

*/

Compilation message

meetings2.cpp: In function 'void solveDFS(int)':
meetings2.cpp:245:28: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  245 |     for (int idx = 0 ; idx < g[node].size() ; ++idx)
      |                        ~~~~^~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 4 ms 16728 KB Output is correct
2 Correct 4 ms 16732 KB Output is correct
3 Correct 4 ms 16820 KB Output is correct
4 Correct 3 ms 16732 KB Output is correct
5 Correct 3 ms 16732 KB Output is correct
6 Correct 3 ms 16732 KB Output is correct
7 Correct 3 ms 16732 KB Output is correct
8 Correct 3 ms 16732 KB Output is correct
9 Correct 3 ms 16732 KB Output is correct
10 Correct 3 ms 16732 KB Output is correct
11 Correct 3 ms 16732 KB Output is correct
12 Correct 3 ms 16732 KB Output is correct
13 Correct 3 ms 16732 KB Output is correct
14 Correct 3 ms 16732 KB Output is correct
15 Correct 3 ms 16732 KB Output is correct
16 Correct 3 ms 16732 KB Output is correct
17 Correct 3 ms 16796 KB Output is correct
18 Correct 3 ms 16728 KB Output is correct
19 Correct 3 ms 16732 KB Output is correct
20 Correct 3 ms 16732 KB Output is correct
21 Correct 3 ms 16732 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 16728 KB Output is correct
2 Correct 4 ms 16732 KB Output is correct
3 Correct 4 ms 16820 KB Output is correct
4 Correct 3 ms 16732 KB Output is correct
5 Correct 3 ms 16732 KB Output is correct
6 Correct 3 ms 16732 KB Output is correct
7 Correct 3 ms 16732 KB Output is correct
8 Correct 3 ms 16732 KB Output is correct
9 Correct 3 ms 16732 KB Output is correct
10 Correct 3 ms 16732 KB Output is correct
11 Correct 3 ms 16732 KB Output is correct
12 Correct 3 ms 16732 KB Output is correct
13 Correct 3 ms 16732 KB Output is correct
14 Correct 3 ms 16732 KB Output is correct
15 Correct 3 ms 16732 KB Output is correct
16 Correct 3 ms 16732 KB Output is correct
17 Correct 3 ms 16796 KB Output is correct
18 Correct 3 ms 16728 KB Output is correct
19 Correct 3 ms 16732 KB Output is correct
20 Correct 3 ms 16732 KB Output is correct
21 Correct 3 ms 16732 KB Output is correct
22 Correct 9 ms 16988 KB Output is correct
23 Correct 9 ms 16988 KB Output is correct
24 Correct 9 ms 17084 KB Output is correct
25 Correct 10 ms 17080 KB Output is correct
26 Correct 9 ms 16988 KB Output is correct
27 Correct 9 ms 16988 KB Output is correct
28 Correct 11 ms 17088 KB Output is correct
29 Correct 9 ms 16988 KB Output is correct
30 Correct 9 ms 16988 KB Output is correct
31 Correct 9 ms 16988 KB Output is correct
32 Correct 14 ms 17172 KB Output is correct
33 Correct 15 ms 17244 KB Output is correct
34 Correct 6 ms 17116 KB Output is correct
35 Correct 4 ms 17240 KB Output is correct
36 Correct 9 ms 16984 KB Output is correct
37 Correct 5 ms 16984 KB Output is correct
38 Correct 11 ms 16988 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 16728 KB Output is correct
2 Correct 4 ms 16732 KB Output is correct
3 Correct 4 ms 16820 KB Output is correct
4 Correct 3 ms 16732 KB Output is correct
5 Correct 3 ms 16732 KB Output is correct
6 Correct 3 ms 16732 KB Output is correct
7 Correct 3 ms 16732 KB Output is correct
8 Correct 3 ms 16732 KB Output is correct
9 Correct 3 ms 16732 KB Output is correct
10 Correct 3 ms 16732 KB Output is correct
11 Correct 3 ms 16732 KB Output is correct
12 Correct 3 ms 16732 KB Output is correct
13 Correct 3 ms 16732 KB Output is correct
14 Correct 3 ms 16732 KB Output is correct
15 Correct 3 ms 16732 KB Output is correct
16 Correct 3 ms 16732 KB Output is correct
17 Correct 3 ms 16796 KB Output is correct
18 Correct 3 ms 16728 KB Output is correct
19 Correct 3 ms 16732 KB Output is correct
20 Correct 3 ms 16732 KB Output is correct
21 Correct 3 ms 16732 KB Output is correct
22 Correct 9 ms 16988 KB Output is correct
23 Correct 9 ms 16988 KB Output is correct
24 Correct 9 ms 17084 KB Output is correct
25 Correct 10 ms 17080 KB Output is correct
26 Correct 9 ms 16988 KB Output is correct
27 Correct 9 ms 16988 KB Output is correct
28 Correct 11 ms 17088 KB Output is correct
29 Correct 9 ms 16988 KB Output is correct
30 Correct 9 ms 16988 KB Output is correct
31 Correct 9 ms 16988 KB Output is correct
32 Correct 14 ms 17172 KB Output is correct
33 Correct 15 ms 17244 KB Output is correct
34 Correct 6 ms 17116 KB Output is correct
35 Correct 4 ms 17240 KB Output is correct
36 Correct 9 ms 16984 KB Output is correct
37 Correct 5 ms 16984 KB Output is correct
38 Correct 11 ms 16988 KB Output is correct
39 Correct 755 ms 27576 KB Output is correct
40 Correct 739 ms 27432 KB Output is correct
41 Correct 894 ms 27612 KB Output is correct
42 Correct 776 ms 27864 KB Output is correct
43 Correct 863 ms 27728 KB Output is correct
44 Correct 879 ms 27844 KB Output is correct
45 Correct 1624 ms 33636 KB Output is correct
46 Correct 2321 ms 39236 KB Output is correct
47 Correct 256 ms 27240 KB Output is correct
48 Correct 182 ms 28948 KB Output is correct
49 Correct 1027 ms 31068 KB Output is correct
50 Correct 236 ms 28996 KB Output is correct
51 Correct 1006 ms 36676 KB Output is correct