Submission #892469

#TimeUsernameProblemLanguageResultExecution timeMemory
892469devkudawlaTavan (COCI16_tavan)C++17
48 / 80
1 ms348 KiB
// AUTHOR->DEV KUDAWLA //---------------------------------------------------- #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; typedef tree<long long, null_type, less<long long>, rb_tree_tag, tree_order_statistics_node_update> ordered_set; // find_by_order(it return an iterator input is a value), order_of_key(input is index) typedef tree<long long, null_type, less_equal<int>, rb_tree_tag, tree_order_statistics_node_update> ordered_multiset; #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #define ll long long #define vl vector<long long> #define nline cout << "\n" #define pb push_back #define db pop_back #define n_digit(n) (int)log10(n) + 1 #define msb(n) (int)(log2(n)) + 1 // it is 1 based #define pll pair<ll, ll> #define all(x) x.begin(), x.end() #define lt(x) x.size() #define ternary(a, b, c) ((a) ? (b) : (c)) #define yesno(a) a ? cout << "Yes" : cout << "No" #define sroot(a) sqrt((long double)a) #define Max(a, b) max((ll)a, (ll)b) #define Min(a, b) min((ll)a, (ll)b) #define mkp(a, b) make_pair(a, b) #define tbits(x) __builtin_popcountll(x) //---------------------------------------------------- template <class T1, class T2> ostream &operator<<(std::ostream &os, pair<T1, T2> &st) { cout << "{ " << st.first << " " << st.second << " }"; return os; } template <class T> istream &operator>>(istream &is, vector<T> &v) { int n = v.size(); for (int i = 0; i < n; i++) is >> v[i]; return is; } template <class T> istream &operator>>(istream &is, vector<vector<T>> &v) { int n = v.size(); int m = v[0].size(); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) is >> v[i][j]; return is; } template <class T> ostream &operator<<(std::ostream &os, vector<T> &v) { int n = v.size(); for (int i = 0; i < n; i++) os << v[i] << ((i == n - 1) ? "\n" : " "); return os; } template <class T> ostream &operator<<(std::ostream &os, vector<vector<T>> &v) { int n = v.size(); int m = v[0].size(); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) os << v[i][j] << " "; os << "\n"; } return os; } template <class T> ostream &operator<<(std::ostream &os, set<T> &st) { cout << "---------------------------------\n"; for (auto i : st) cout << i << " "; nline; cout << "---------------------------------\n"; return os; } template <class T> ostream &operator<<(std::ostream &os, multiset<T> &st) { cout << "---------------------------------\n"; for (auto i : st) cout << i << " "; nline; cout << "---------------------------------\n"; return os; } template <class T1, class T2> ostream &operator<<(std::ostream &os, map<T1, T2> &st) { cout << "-------------------------------\n"; auto x = st.begin(); while (x != st.end()) { cout << x->first; cout << " -> "; cout << x->second; nline; x++; } cout << "-------------------------------\n"; return os; } template <class T> vector<T> add(vector<T> v1, vector<T> v2) { vector<T> v3 = v1; for (ll i = 0; i < v2.size(); i++) v3.push_back(v2[i]); return v3; } inline ll power2(ll n) { ll answer = 0; if (n != 0) answer = msb(((ll)n) ^ ((ll)(n - 1))) - 1; return answer; } inline ll indexOf(ordered_multiset &st, ll value) { return st.order_of_key(value); } inline ll valueAt(ordered_multiset &st, ll index) { return *st.find_by_order(index); } inline ll indexOf(ordered_set &st, ll value) { return st.order_of_key(value); } inline ll valueAt(ordered_set &st, ll index) { return *st.find_by_order(index); } template <class T> void Distinct(T &v, bool sorting = true) { if (sorting) sort(begin(v), end(v)); v.resize(unique(begin(v), end(v)) - begin(v)); } //---------------------------------------------------- const ll N1 = 1000000007; const ll N2 = 998244353; const long double epsilon = 1e-9; //---------------------------------------------------- // MODULAR ARITHMETIC inline ll expo(ll a, ll b, ll mod = LONG_LONG_MAX) { ll res = 1; while (b > 0) { if (b & 1) res = ((__int128_t)res * a) % mod; a = ((__int128_t)a * a) % mod; b = b >> 1; } return res; } inline ll mminvprime(ll a, ll b) { return expo(a, b - 2, b); } // FOR PRIME inline ll mod_add(ll a, ll b, ll m = N1) { a = a % m; b = b % m; return (((a + b) % m) + m) % m; } inline ll mod_mul(ll a, ll b, ll m = N1) { a = a % m; b = b % m; return (((__int128_t)(a * b) % m) + m) % m; } inline ll mod_sub(ll a, ll b, ll m = N1) { a = a % m; b = b % m; return (((a - b) % m) + m) % m; } inline ll mod_div(ll a, ll b, ll m = N1) { a = a % m; b = b % m; return (mod_mul(a, mminvprime(b, m), m) + m) % m; } // only for prime m ll ncr(ll n, ll r, bool mod_version = false, ll mod = N1) { ll answer = 0; if (n >= r) { r = Min(r, n - r); if (mod_version == true) { ll a = 1; for (ll i = n; i >= n - r + 1; i--) a = mod_mul(a, i, mod); ll b = 1; for (ll i = 1; i <= r; i++) b = mod_mul(b, i, mod); b = mminvprime(b, mod); a = mod_mul(a, b, mod); answer = a; } else { ll a = 1; ll b = 1; for (ll i = n; i >= n - r + 1; i--) { a *= i; b *= (n - i + 1); ll g = __gcd(a, b); a /= g, b /= g; } answer = a / b; } } return answer; } ll factorial(ll n, bool mod_version = false, ll mod = N1) { ll answer = 1; if (mod_version == true) { for (int i = 2; i <= n; i++) answer = mod_mul(answer, i, mod); } else { for (int i = 2; i <= n; i++) answer *= i; } return answer; } bool is_prime(ll a) { if (a == 1) return false; for (ll i = 2; i * i <= a; i++) { if (a % i == 0) return false; } return true; } //---------------------------------------------------- map<ll, ll> prime_factors(ll n, bool debug = false) { map<ll, ll> answer; ll a = n; for (ll i = 2; i * i <= a; i++) while (a % i == 0) answer[i]++, a /= i; if (a > 1) answer[a]++; if (debug) { for (auto i : answer) cout << i.first << " -> " << i.second << "\n"; } return answer; } //---------------------------------------------------- // const int n_sieve = (20000008); // O(Nlog(log(N))) // vector<bool> prime_sieve(n_sieve + 1, true); void initialise_sieve(vector<bool> &prime_sieve) { prime_sieve[0] = false; prime_sieve[1] = false; for (ll i = 2; i * i < lt(prime_sieve); i++) if (prime_sieve[i] == true) for (ll j = 2; j * i < lt(prime_sieve); j++) prime_sieve[j * i] = false; } //---------------------------------------------------- // #define LOCAL_COMPILER #ifdef LOCAL_COMPILER #define dbg(x) \ cerr << #x << " "; \ cerr << x << "\n"; #endif #ifndef LOCAL_COMPILER #define dbg(x) #endif //---------------------------------------------------- // CODE STARTS HERE //---------------------------------------------------- void solve(bool testCases = true) { ll T = 1; //->TEST CASES if (testCases) cin >> T; while (T--) { ll n, m, k, x; cin >> n >> m >> k >> x; string s; cin >> s; vector<string> v(m); cin >> v; for (auto &e : v) sort(all(e)); vector<char> y; for (ll i = 0; i < m; i++) { for (ll j = 0; j < k; j++) { ll upper = j + 1; ll c = (m - (i + 1)); while (c and upper < x) { upper *= k; c--; } dbg(i); dbg(j); dbg(upper); if (upper >= x) { x -= upper; y.push_back(v[i][j]); break; } } } reverse(all(y)); for (ll i = 0; i < n; i++) { if (s[i] == '#') { s[i] = y.back(); y.pop_back(); } } cout << s; nline; } //-------------------------------------------- // CODE ENDS HERE } //---------------------------------------------------- int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); //------------------------------------------------ // initialise_sieve(prime_sieve); //------------------------------------------------ solve(false); //------------------------------------------------ return 0; } //----------------------------------------------------

Compilation message (stderr)

tavan.cpp: In function 'void initialise_sieve(std::vector<bool>&)':
tavan.cpp:279:34: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::vector<bool>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  279 |             for (ll j = 2; j * i < lt(prime_sieve); j++)
      |                                  ^
#Verdict Execution timeMemoryGrader output
Fetching results...