Submission #888542

# Submission time Handle Problem Language Result Execution time Memory
888542 2023-12-17T17:19:53 Z Billy_Nguyen Mecho (IOI09_mecho) C++17
6 / 100
124 ms 27680 KB
#include <algorithm>
#include <bitset>
#include <cctype>
#include <cmath>
#include <cstring>
#include <deque>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>

using namespace std;
typedef long long ll;
typedef vector<int> vi;
typedef pair<int, int> pi;
typedef vector<pair<int, int>> vpi;

#define x first
#define fastio()                 \
    ios::sync_with_stdio(false); \
    cin.tie(0);                  \
    cout.tie(0)
#define y second
#define PB push_back
#define MP make_pair
#define REP(i, a, b) for (int i = a; i < b; i++)
int mod = 1e9 + 7;
int mod_inverse_2 = 500000004;  // Modular inverse of 2 modulo (10^9 + 7), also
                                // the number has to be in long long otherwise
                                // if the number is int need to mutiply by 1LL
const int N = 100009;
int dx[] = {0, 0, -1, 1};
int dy[] = {1, -1, 0, 0};
ll bound = 1e18;
vector<vector<char>> grid;
ll n, s;
pair<ll, ll> bear, home;
vector<pair<ll, ll>> hives;
vector<vector<ll>> beesDepths;
vector<vector<ll>> bearDepths;
bool valid = false;

void floodfill(ll i, ll j, vector<vector<bool>> &visited, ll mins) {
    REP(k, 0, 4) {
        if (i + dy[k] < 1 || j + dx[k] < 1 || i + dy[k] > n || j + dx[k] > n) {
            continue;
        }

        if (visited[i + dy[k]][j + dx[k]]) {
            continue;
        }

        if ((bearDepths[i + dy[k]][j + dx[k]] + 1) / s >=
            beesDepths[i + dy[k]][j + dx[k]] - mins) {
            continue;
        }

        if (grid[i + dy[k]][j + dx[k]] == 'D') {
            valid = true;
            return;
        }

        if (grid[i + dy[k]][j + dx[k]] != 'G') {
            continue;
        }

        visited[i][j] = true;
        floodfill(i + dy[k], j + dx[k], visited, mins);
    }
}

void solve() {
    cin >> n >> s;

    grid.resize(n + 1);
    beesDepths.resize(n + 1);

    REP(i, 0, n + 1) {
        grid[i].resize(n + 1);
        beesDepths[i].resize(n + 1, 1e18);
    }

    REP(i, 1, n + 1) {
        REP(j, 1, n + 1) {
            cin >> grid[i][j];

            if (grid[i][j] == 'M') {
                bear = {i, j};
            }

            if (grid[i][j] == 'D') {
                home = {i, j};
            }

            if (grid[i][j] == 'H') {
                hives.PB({i, j});
            }
        }
    }

    deque<pair<pair<ll, ll>, ll>> q;

    REP(i, 0, hives.size()) {
        q.PB(MP(hives[i], 0));
        beesDepths[hives[i].x][hives[i].y] = 0;
    }

    while (!q.empty()) {
        pair<pair<ll, ll>, ll> cur = q.front();
        pair<ll, ll> coords = cur.x;
        ll d = cur.y;
        q.pop_front();

        REP(k, 0, 4) {
            if (coords.x + dy[k] < 1 || coords.y + dx[k] < 1 ||
                coords.x + dy[k] > n || coords.y + dy[k] > n ||
                (grid[coords.x + dy[k]][coords.y + dx[k]] != 'G' &&
                 grid[coords.x + dy[k]][coords.y + dx[k]] != 'D' && grid[coords.x + dy[k]][coords.y + dx[k]] != 'M')) {
                continue;
            }

            if (beesDepths[coords.x + dy[k]][coords.y + dx[k]] > d + 1) {
                beesDepths[coords.x + dy[k]][coords.y + dx[k]] = d + 1;
                q.PB(MP(MP(coords.x + dy[k], coords.y + dx[k]), d + 1));
            }
        }
    }

    ll l = 0;
    ll r = n * n;
    q.PB(MP(bear, 0));
    bearDepths.resize(n + 1);

    REP(i, 0, n + 1) { bearDepths[i].resize(n + 1, 1e18); }
    bearDepths[bear.x][bear.y] = 0;

    while (!q.empty()) {
        pair<pair<ll, ll>, ll> cur = q.front();
        q.pop_front();

        pair<ll, ll> coords = cur.x;
        ll d = cur.y;

        REP(k, 0, 4) {
            if (coords.x + dy[k] < 1 || coords.y + dx[k] < 1 ||
                coords.x + dy[k] > n || coords.y + dy[k] > n ||
                (grid[coords.x + dy[k]][coords.y + dx[k]] != 'G' &&
                 grid[coords.x + dy[k]][coords.y + dx[k]] != 'D')) {
                continue;
            }

            if (bearDepths[coords.x + dy[k]][coords.y + dx[k]] > d + 1) {
                bearDepths[coords.x + dy[k]][coords.y + dx[k]] = d + 1;
                q.PB(MP(MP(coords.x + dy[k], coords.y + dx[k]), d + 1));
            }
        }
    }

    while (l <= r) {
        ll mid = l + (r - l) / 2;
        vector<vector<bool>> bearVis(n + 1);

        REP(i, 0, n + 1) { bearVis[i].resize(n + 1, false); }

        bearVis[bear.x][bear.y] = true;

        floodfill(bear.x, bear.y, bearVis, mid);
        if (valid) {
            l = mid + 1;
        } else {
            r = mid - 1;
        }

        // cout << l << " " << r << "\n";
    }

    cout << l - 1 << "\n";
}

int main() {
    fastio();
    solve();

    return 0;
}

Compilation message

mecho.cpp: In function 'void solve()':
mecho.cpp:32:40: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<long long int, long long int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   32 | #define REP(i, a, b) for (int i = a; i < b; i++)
......
  109 |     REP(i, 0, hives.size()) {
      |         ~~~~~~~~~~~~~~~~~~              
mecho.cpp:109:5: note: in expansion of macro 'REP'
  109 |     REP(i, 0, hives.size()) {
      |     ^~~
# Verdict Execution time Memory Grader output
1 Incorrect 0 ms 344 KB Output isn't correct
2 Incorrect 1 ms 600 KB Output isn't correct
3 Incorrect 0 ms 348 KB Output isn't correct
4 Incorrect 1 ms 348 KB Output isn't correct
5 Correct 0 ms 348 KB Output is correct
6 Incorrect 0 ms 348 KB Output isn't correct
7 Incorrect 101 ms 25540 KB Output isn't correct
8 Correct 0 ms 348 KB Output is correct
9 Incorrect 0 ms 348 KB Output isn't correct
10 Incorrect 0 ms 348 KB Output isn't correct
11 Incorrect 0 ms 348 KB Output isn't correct
12 Incorrect 0 ms 348 KB Output isn't correct
13 Incorrect 1 ms 348 KB Output isn't correct
14 Correct 1 ms 604 KB Output is correct
15 Incorrect 0 ms 348 KB Output isn't correct
16 Incorrect 0 ms 348 KB Output isn't correct
17 Incorrect 0 ms 348 KB Output isn't correct
18 Incorrect 1 ms 348 KB Output isn't correct
19 Incorrect 0 ms 348 KB Output isn't correct
20 Incorrect 0 ms 344 KB Output isn't correct
21 Incorrect 0 ms 348 KB Output isn't correct
22 Incorrect 1 ms 344 KB Output isn't correct
23 Incorrect 0 ms 348 KB Output isn't correct
24 Incorrect 0 ms 348 KB Output isn't correct
25 Incorrect 0 ms 348 KB Output isn't correct
26 Incorrect 1 ms 348 KB Output isn't correct
27 Incorrect 1 ms 348 KB Output isn't correct
28 Incorrect 1 ms 604 KB Output isn't correct
29 Incorrect 1 ms 348 KB Output isn't correct
30 Incorrect 1 ms 604 KB Output isn't correct
31 Incorrect 1 ms 348 KB Output isn't correct
32 Incorrect 1 ms 604 KB Output isn't correct
33 Incorrect 4 ms 2592 KB Output isn't correct
34 Incorrect 13 ms 5212 KB Output isn't correct
35 Incorrect 11 ms 2652 KB Output isn't correct
36 Incorrect 5 ms 3040 KB Output isn't correct
37 Incorrect 17 ms 6748 KB Output isn't correct
38 Incorrect 16 ms 3164 KB Output isn't correct
39 Incorrect 6 ms 3932 KB Output isn't correct
40 Incorrect 21 ms 8424 KB Output isn't correct
41 Incorrect 19 ms 3928 KB Output isn't correct
42 Incorrect 7 ms 4700 KB Output isn't correct
43 Incorrect 26 ms 10380 KB Output isn't correct
44 Incorrect 24 ms 4700 KB Output isn't correct
45 Incorrect 8 ms 5724 KB Output isn't correct
46 Incorrect 31 ms 12640 KB Output isn't correct
47 Incorrect 30 ms 5724 KB Output isn't correct
48 Incorrect 12 ms 6492 KB Output isn't correct
49 Incorrect 46 ms 14980 KB Output isn't correct
50 Incorrect 35 ms 6804 KB Output isn't correct
51 Incorrect 12 ms 7772 KB Output isn't correct
52 Incorrect 47 ms 17244 KB Output isn't correct
53 Incorrect 41 ms 7844 KB Output isn't correct
54 Incorrect 14 ms 8792 KB Output isn't correct
55 Incorrect 63 ms 20356 KB Output isn't correct
56 Incorrect 47 ms 9052 KB Output isn't correct
57 Incorrect 15 ms 10072 KB Output isn't correct
58 Incorrect 68 ms 23100 KB Output isn't correct
59 Incorrect 59 ms 10280 KB Output isn't correct
60 Incorrect 18 ms 11352 KB Output isn't correct
61 Incorrect 80 ms 26252 KB Output isn't correct
62 Incorrect 67 ms 11552 KB Output isn't correct
63 Incorrect 96 ms 11548 KB Output isn't correct
64 Incorrect 101 ms 11548 KB Output isn't correct
65 Incorrect 124 ms 11480 KB Output isn't correct
66 Incorrect 114 ms 11548 KB Output isn't correct
67 Correct 109 ms 11348 KB Output is correct
68 Correct 58 ms 11616 KB Output is correct
69 Incorrect 49 ms 11600 KB Output isn't correct
70 Incorrect 49 ms 11504 KB Output isn't correct
71 Correct 55 ms 11604 KB Output is correct
72 Incorrect 43 ms 11348 KB Output isn't correct
73 Incorrect 57 ms 26928 KB Output isn't correct
74 Incorrect 53 ms 21312 KB Output isn't correct
75 Incorrect 75 ms 23628 KB Output isn't correct
76 Incorrect 76 ms 21076 KB Output isn't correct
77 Incorrect 59 ms 21684 KB Output isn't correct
78 Correct 95 ms 27680 KB Output is correct
79 Incorrect 46 ms 20304 KB Output isn't correct
80 Incorrect 63 ms 22612 KB Output isn't correct
81 Incorrect 92 ms 25364 KB Output isn't correct
82 Incorrect 71 ms 23892 KB Output isn't correct
83 Correct 74 ms 17116 KB Output is correct
84 Incorrect 66 ms 16792 KB Output isn't correct
85 Incorrect 75 ms 17572 KB Output isn't correct
86 Incorrect 76 ms 17232 KB Output isn't correct
87 Incorrect 79 ms 18012 KB Output isn't correct
88 Correct 79 ms 18768 KB Output is correct
89 Incorrect 80 ms 18004 KB Output isn't correct
90 Incorrect 83 ms 19284 KB Output isn't correct
91 Incorrect 86 ms 18748 KB Output isn't correct
92 Incorrect 83 ms 18772 KB Output isn't correct