Submission #888469

# Submission time Handle Problem Language Result Execution time Memory
888469 2023-12-17T13:43:33 Z Billy_Nguyen Mecho (IOI09_mecho) C++17
0 / 100
169 ms 28240 KB
#include <algorithm>
#include <bitset>
#include <cctype>
#include <cmath>
#include <cstring>
#include <deque>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>

using namespace std;
typedef long long ll;
typedef vector<int> vi;
typedef pair<int, int> pi;
typedef vector<pair<int, int>> vpi;

#define x first
#define fastio()                 \
    ios::sync_with_stdio(false); \
    cin.tie(0);                  \
    cout.tie(0)
#define y second
#define PB push_back
#define MP make_pair
#define REP(i, a, b) for (int i = a; i < b; i++)
int mod = 1e9 + 7;
int mod_inverse_2 = 500000004; // Modular inverse of 2 modulo (10^9 + 7), also
                               // the number has to be in long long otherwise
                               // if the number is int need to mutiply by 1LL
const int N = 100009;
int dx[] = {0, 0, -1, 1};
int dy[] = {1, -1, 0, 0};
ll bound = 1e18;
vector<vector<char>> grid;
ll n, s;
pair<ll, ll> bear, home;
vector<pair<ll, ll>> hives;
vector<vector<ll>> beesDepths;
vector<vector<ll>> bearDepths;
bool valid = false;

void floodfill(ll i, ll j, vector<vector<bool>> &visited, ll mins)
{

    REP(k, 0, 4)
    {
        if (i + dy[k] < 1 || j + dx[k] < 1 || i + dy[k] > n || j + dx[k] > n)
        {
            continue;
        }

        if (visited[i + dy[k]][j + dx[k]])
        {
            continue;
        }

        if ((bearDepths[i + dy[k]][j + dx[k]] + 1) / s >=
            beesDepths[i + dy[k]][j + dx[k]] - mins)
        {
            continue;
        }

        if (grid[i + dy[k]][j + dx[k]] == 'D')
        {
            valid = true;
            return;
        }

        if (grid[i + dy[k]][j + dx[k]] != 'G')
        {
            continue;
        }


        visited[i][j] = true;
        floodfill(i + dy[k], j + dx[k], visited, mins);
    }
}

void solve()
{
    cin >> n >> s;

    grid.resize(n + 1);
    beesDepths.resize(n + 1);

    REP(i, 0, n + 1)
    {
        grid[i].resize(n + 1);
        beesDepths[i].resize(n + 1, 1e18);
    }

    REP(i, 1, n + 1)
    {
        REP(j, 1, n + 1)
        {
            cin >> grid[i][j];

            if (grid[i][j] == 'M')
            {
                bear = {i, j};
            }

            if (grid[i][j] == 'D')
            {
                home = {i, j};
            }

            if (grid[i][j] == 'H')
            {
                hives.PB({i, j});
            }
        }
    }

    deque<pair<pair<ll, ll>, ll>> q;

    REP(i, 0, hives.size())
    {
        q.PB(MP(hives[i], 0));
        beesDepths[hives[i].x][hives[i].y] = 0;
    }

    while (!q.empty())
    {
        pair<pair<ll, ll>, ll> cur = q.front();
        pair<ll, ll> coords = cur.x;
        ll d = cur.y;
        q.pop_front();

        REP(k, 0, 4)
        {
            if (coords.x + dy[k] < 1 || coords.y + dx[k] < 1 ||
                coords.x + dy[k] > n || coords.y + dy[k] > n ||
                grid[coords.x + dy[k]][coords.y + dx[k]] != 'G')
            {
                continue;
            }

            if (beesDepths[coords.x + dy[k]][coords.y + dx[k]] > d + 1)
            {
                beesDepths[coords.x + dy[k]][coords.y + dx[k]] = d + 1;
                q.PB(MP(MP(coords.x + dy[k], coords.y + dx[k]), d + 1));
            }
        }
    }

    ll l = 0;
    ll r = n * n;
    q.PB(MP(bear, 0));
    bearDepths.resize(n + 1);

    REP(i, 0, n + 1) { bearDepths[i].resize(n + 1, 1e18); }
    bearDepths[bear.x][bear.y] = 0;

    while (!q.empty())
    {
        pair<pair<ll, ll>, ll> cur = q.front();
        q.pop_front();

        pair<ll, ll> coords = cur.x;
        ll d = cur.y;

        REP(k, 0, 4)
        {
            if (coords.x + dy[k] < 1 || coords.y + dx[k] < 1 ||
                coords.x + dy[k] > n || coords.y + dy[k] > n ||
                grid[coords.x + dy[k]][coords.y + dx[k]] != 'G')
            {
                continue;
            }

            if (bearDepths[coords.x + dy[k]][coords.y + dx[k]] > d + 1)
            {
                bearDepths[coords.x + dy[k]][coords.y + dx[k]] = d + 1;
                q.PB(MP(MP(coords.x + dy[k], coords.y + dx[k]), d + 1));
            }
        }
    }

    while (l <= r)
    {
        ll mid = l + (r - l) / 2;
        vector<vector<bool>> bearVis(n + 1);
        valid = false;

        REP(i, 0, n + 1) { bearVis[i].resize(n + 1, false); }

        bearVis[bear.x][bear.y] = true;

        floodfill(bear.x, bear.y, bearVis, mid);
        if (valid)
        {
            l = mid + 1;
        }
        else
        {
            r = mid - 1;
        }

        cout << l << " " << r << "\n";
    }

    cout << l - 1 << "\n";
}

int main()
{
    fastio();
    solve();

    return 0;
}

Compilation message

mecho.cpp: In function 'void solve()':
mecho.cpp:32:40: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<long long int, long long int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   32 | #define REP(i, a, b) for (int i = a; i < b; i++)
......
  125 |     REP(i, 0, hives.size())
      |         ~~~~~~~~~~~~~~~~~~              
mecho.cpp:125:5: note: in expansion of macro 'REP'
  125 |     REP(i, 0, hives.size())
      |     ^~~
# Verdict Execution time Memory Grader output
1 Incorrect 0 ms 348 KB Output isn't correct
2 Incorrect 0 ms 348 KB Output isn't correct
3 Incorrect 0 ms 344 KB Output isn't correct
4 Incorrect 0 ms 344 KB Output isn't correct
5 Incorrect 0 ms 348 KB Output isn't correct
6 Incorrect 0 ms 456 KB Output isn't correct
7 Incorrect 116 ms 26256 KB Output isn't correct
8 Incorrect 0 ms 344 KB Output isn't correct
9 Incorrect 0 ms 344 KB Output isn't correct
10 Incorrect 0 ms 348 KB Output isn't correct
11 Incorrect 0 ms 348 KB Output isn't correct
12 Incorrect 0 ms 348 KB Output isn't correct
13 Incorrect 1 ms 348 KB Output isn't correct
14 Incorrect 1 ms 604 KB Output isn't correct
15 Incorrect 0 ms 348 KB Output isn't correct
16 Incorrect 0 ms 348 KB Output isn't correct
17 Incorrect 0 ms 348 KB Output isn't correct
18 Incorrect 0 ms 348 KB Output isn't correct
19 Incorrect 0 ms 348 KB Output isn't correct
20 Incorrect 1 ms 344 KB Output isn't correct
21 Incorrect 1 ms 348 KB Output isn't correct
22 Incorrect 1 ms 348 KB Output isn't correct
23 Incorrect 1 ms 348 KB Output isn't correct
24 Incorrect 1 ms 344 KB Output isn't correct
25 Incorrect 1 ms 344 KB Output isn't correct
26 Incorrect 1 ms 604 KB Output isn't correct
27 Incorrect 1 ms 348 KB Output isn't correct
28 Incorrect 1 ms 464 KB Output isn't correct
29 Incorrect 1 ms 348 KB Output isn't correct
30 Incorrect 1 ms 604 KB Output isn't correct
31 Incorrect 1 ms 348 KB Output isn't correct
32 Incorrect 1 ms 604 KB Output isn't correct
33 Incorrect 4 ms 2652 KB Output isn't correct
34 Incorrect 16 ms 5468 KB Output isn't correct
35 Incorrect 11 ms 2844 KB Output isn't correct
36 Incorrect 5 ms 3420 KB Output isn't correct
37 Incorrect 34 ms 7004 KB Output isn't correct
38 Incorrect 15 ms 3416 KB Output isn't correct
39 Incorrect 7 ms 4188 KB Output isn't correct
40 Incorrect 31 ms 8796 KB Output isn't correct
41 Incorrect 20 ms 4268 KB Output isn't correct
42 Incorrect 8 ms 4956 KB Output isn't correct
43 Incorrect 51 ms 10560 KB Output isn't correct
44 Incorrect 27 ms 4956 KB Output isn't correct
45 Incorrect 10 ms 5980 KB Output isn't correct
46 Incorrect 43 ms 12880 KB Output isn't correct
47 Incorrect 36 ms 6088 KB Output isn't correct
48 Incorrect 11 ms 7000 KB Output isn't correct
49 Incorrect 65 ms 15212 KB Output isn't correct
50 Incorrect 35 ms 7004 KB Output isn't correct
51 Incorrect 12 ms 7980 KB Output isn't correct
52 Incorrect 70 ms 17752 KB Output isn't correct
53 Incorrect 41 ms 8272 KB Output isn't correct
54 Incorrect 16 ms 9412 KB Output isn't correct
55 Incorrect 106 ms 20696 KB Output isn't correct
56 Incorrect 49 ms 9524 KB Output isn't correct
57 Incorrect 19 ms 10708 KB Output isn't correct
58 Incorrect 105 ms 23444 KB Output isn't correct
59 Incorrect 62 ms 10832 KB Output isn't correct
60 Incorrect 23 ms 12160 KB Output isn't correct
61 Incorrect 153 ms 26704 KB Output isn't correct
62 Incorrect 67 ms 12124 KB Output isn't correct
63 Incorrect 97 ms 12112 KB Output isn't correct
64 Incorrect 169 ms 12260 KB Output isn't correct
65 Incorrect 153 ms 12260 KB Output isn't correct
66 Incorrect 126 ms 12088 KB Output isn't correct
67 Incorrect 109 ms 12180 KB Output isn't correct
68 Incorrect 62 ms 12372 KB Output isn't correct
69 Incorrect 53 ms 12112 KB Output isn't correct
70 Incorrect 49 ms 12252 KB Output isn't correct
71 Incorrect 52 ms 12112 KB Output isn't correct
72 Incorrect 56 ms 11752 KB Output isn't correct
73 Incorrect 102 ms 24108 KB Output isn't correct
74 Incorrect 80 ms 21940 KB Output isn't correct
75 Incorrect 91 ms 24476 KB Output isn't correct
76 Incorrect 75 ms 21588 KB Output isn't correct
77 Incorrect 78 ms 22528 KB Output isn't correct
78 Incorrect 93 ms 28240 KB Output isn't correct
79 Incorrect 82 ms 20816 KB Output isn't correct
80 Incorrect 69 ms 22992 KB Output isn't correct
81 Incorrect 82 ms 25680 KB Output isn't correct
82 Incorrect 75 ms 24468 KB Output isn't correct
83 Incorrect 78 ms 17744 KB Output isn't correct
84 Incorrect 73 ms 17236 KB Output isn't correct
85 Incorrect 75 ms 18156 KB Output isn't correct
86 Incorrect 80 ms 18164 KB Output isn't correct
87 Incorrect 81 ms 18852 KB Output isn't correct
88 Incorrect 80 ms 19536 KB Output isn't correct
89 Incorrect 85 ms 18556 KB Output isn't correct
90 Incorrect 82 ms 19848 KB Output isn't correct
91 Incorrect 109 ms 19532 KB Output isn't correct
92 Incorrect 93 ms 19284 KB Output isn't correct