#include <bits/stdc++.h>
using namespace std;
#define all(x) x.begin(), x.end()
#define sz(x) (int)x.size()
// Persistent Segment Tree
struct node {
node *l, *r;
int val;
node() : l(0), r(0), val(0) {}
node(int _v) : l(0), r(0), val(_v) {}
node(node *_l, node *_r) : l(_l), r(_r), val(l->val + r->val) {}
void extend() {
if (!l) l = new node();
if (!r) r = new node();
}
};
node* update(node *cur, int p, int v, int l, int r) {
if (l == r) return new node(cur->val + v);
cur->extend();
int mid = (l + r) >> 1;
if (p <= mid) return new node(update(cur->l, p, v, l, mid), cur->r);
else return new node(cur->l, update(cur->r, p, v, mid + 1, r));
}
int query(node *cur, int qs, int qe, int l, int r) {
if (r < qs || qe < l) return 0;
if (qs <= l && r <= qe) return cur->val;
cur->extend();
int mid = (l + r) >> 1;
return query(cur->l, qs, qe, l, mid) + query(cur->r, qs, qe, mid + 1, r);
}
// End of Persistent Segment Tree
const int N = 2e5 + 7, N2 = 6e5 + 2, LG = 22;
int n, k, a[N], b[N], t[N], t_idx[N2], max_t_idx[LG][N2];
vector<node*> roots; // PST
constexpr int lg2(const int x) { return 31 - __builtin_clz(x); }
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
cin >> n >> k, roots.reserve(k + 1), roots.push_back(new node());
for (int i = 1; i <= n; i++) cin >> a[i] >> b[i];
for (int i = 1; i <= k; i++) cin >> t[i];
basic_string<int> cmpr; cmpr.reserve(2 * n + k + 1), cmpr += 0;
for (int i = 1; i <= n; i++) cmpr += a[i], cmpr += b[i];
for (int i = 1; i <= k; i++) cmpr += t[i];
sort(all(cmpr)), cmpr.erase(unique(all(cmpr)), cmpr.end());
auto search = [&](const int v) -> int { return lower_bound(all(cmpr), v) - cmpr.begin(); };
for (int i = 1; i <= n; i++) a[i] = search(a[i]), b[i] = search(b[i]);
for (int i = 1; i <= k; i++) t[i] = search(t[i]);
// for (int i = 0; i <= sz(cmpr); i++) t_idx[i] = -1;
for (int i = 1; i <= k; i++) t_idx[t[i]] = i;
// Sparse table
for (int i = 1; i <= sz(cmpr); i++)
max_t_idx[0][i] = t_idx[i];
for (int j = 1; j < LG; j++)
for (int i = 1; i + (1 << j) - 1 <= sz(cmpr); i++)
max_t_idx[j][i] = max(max_t_idx[j - 1][i], max_t_idx[j - 1][i + (1 << (j - 1))]);
auto query_max_t_idx = [&](int l, int r) -> int {
int len = lg2(r - l + 1);
return max(max_t_idx[len][l], max_t_idx[len][r - (1 << len) + 1]);
};
// End of Sparse table
// Persistent Segment Tree
for (int i = 1; i <= k; i++)
roots.push_back(update(roots.back(), t[i], 1, 1, sz(cmpr)));
auto cnt_on_range = [&](int l, int r, int x, int y) {
// Number of elements a[l..r] that x <= a[i] <= y;
return query(roots[r], x, y, 1, sz(cmpr)) - query(roots[l - 1], x, y, 1, sz(cmpr));
};
// End of Persistent Segment Tree
basic_string<int> ans; ans.reserve(n);
for (int i = 1; i <= n; i++) {
if (a[i] == b[i]) { ans += cmpr[a[i]]; continue; }
bool swapped = (a[i] > b[i] ? (swap(a[i], b[i]), true) : false);
int last_pos = query_max_t_idx(a[i], b[i] - 1);
int cnt_flipped = cnt_on_range(last_pos + 1, k, b[i], sz(cmpr));
if (last_pos != 0 || swapped) swap(a[i], b[i]);
ans += cmpr[~cnt_flipped & 1 ? a[i] : b[i]];
}
cout << accumulate(ans.begin(), ans.end(), 0LL) << '\n';
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
4 ms |
25432 KB |
Output is correct |
2 |
Correct |
4 ms |
25436 KB |
Output is correct |
3 |
Correct |
4 ms |
27680 KB |
Output is correct |
4 |
Correct |
4 ms |
27740 KB |
Output is correct |
5 |
Correct |
4 ms |
27740 KB |
Output is correct |
6 |
Correct |
4 ms |
27740 KB |
Output is correct |
7 |
Correct |
4 ms |
27740 KB |
Output is correct |
8 |
Correct |
4 ms |
27484 KB |
Output is correct |
9 |
Correct |
4 ms |
27484 KB |
Output is correct |
10 |
Correct |
4 ms |
25436 KB |
Output is correct |
11 |
Correct |
4 ms |
25436 KB |
Output is correct |
12 |
Correct |
4 ms |
25436 KB |
Output is correct |
13 |
Correct |
4 ms |
27484 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
4 ms |
25432 KB |
Output is correct |
2 |
Correct |
4 ms |
25436 KB |
Output is correct |
3 |
Correct |
4 ms |
27680 KB |
Output is correct |
4 |
Correct |
4 ms |
27740 KB |
Output is correct |
5 |
Correct |
4 ms |
27740 KB |
Output is correct |
6 |
Correct |
4 ms |
27740 KB |
Output is correct |
7 |
Correct |
4 ms |
27740 KB |
Output is correct |
8 |
Correct |
4 ms |
27484 KB |
Output is correct |
9 |
Correct |
4 ms |
27484 KB |
Output is correct |
10 |
Correct |
4 ms |
25436 KB |
Output is correct |
11 |
Correct |
4 ms |
25436 KB |
Output is correct |
12 |
Correct |
4 ms |
25436 KB |
Output is correct |
13 |
Correct |
4 ms |
27484 KB |
Output is correct |
14 |
Correct |
19 ms |
40280 KB |
Output is correct |
15 |
Correct |
43 ms |
55892 KB |
Output is correct |
16 |
Correct |
72 ms |
66180 KB |
Output is correct |
17 |
Correct |
87 ms |
73808 KB |
Output is correct |
18 |
Correct |
91 ms |
73808 KB |
Output is correct |
19 |
Correct |
84 ms |
73812 KB |
Output is correct |
20 |
Correct |
91 ms |
73732 KB |
Output is correct |
21 |
Correct |
89 ms |
72996 KB |
Output is correct |
22 |
Correct |
67 ms |
70812 KB |
Output is correct |
23 |
Correct |
68 ms |
67612 KB |
Output is correct |
24 |
Correct |
60 ms |
64136 KB |
Output is correct |
25 |
Correct |
68 ms |
71576 KB |
Output is correct |
26 |
Correct |
80 ms |
70680 KB |
Output is correct |
27 |
Correct |
94 ms |
71344 KB |
Output is correct |
28 |
Correct |
71 ms |
71508 KB |
Output is correct |
29 |
Correct |
93 ms |
73044 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
4 ms |
25432 KB |
Output is correct |
2 |
Correct |
4 ms |
25436 KB |
Output is correct |
3 |
Correct |
4 ms |
27680 KB |
Output is correct |
4 |
Correct |
4 ms |
27740 KB |
Output is correct |
5 |
Correct |
4 ms |
27740 KB |
Output is correct |
6 |
Correct |
4 ms |
27740 KB |
Output is correct |
7 |
Correct |
4 ms |
27740 KB |
Output is correct |
8 |
Correct |
4 ms |
27484 KB |
Output is correct |
9 |
Correct |
4 ms |
27484 KB |
Output is correct |
10 |
Correct |
4 ms |
25436 KB |
Output is correct |
11 |
Correct |
4 ms |
25436 KB |
Output is correct |
12 |
Correct |
4 ms |
25436 KB |
Output is correct |
13 |
Correct |
4 ms |
27484 KB |
Output is correct |
14 |
Correct |
19 ms |
40280 KB |
Output is correct |
15 |
Correct |
43 ms |
55892 KB |
Output is correct |
16 |
Correct |
72 ms |
66180 KB |
Output is correct |
17 |
Correct |
87 ms |
73808 KB |
Output is correct |
18 |
Correct |
91 ms |
73808 KB |
Output is correct |
19 |
Correct |
84 ms |
73812 KB |
Output is correct |
20 |
Correct |
91 ms |
73732 KB |
Output is correct |
21 |
Correct |
89 ms |
72996 KB |
Output is correct |
22 |
Correct |
67 ms |
70812 KB |
Output is correct |
23 |
Correct |
68 ms |
67612 KB |
Output is correct |
24 |
Correct |
60 ms |
64136 KB |
Output is correct |
25 |
Correct |
68 ms |
71576 KB |
Output is correct |
26 |
Correct |
80 ms |
70680 KB |
Output is correct |
27 |
Correct |
94 ms |
71344 KB |
Output is correct |
28 |
Correct |
71 ms |
71508 KB |
Output is correct |
29 |
Correct |
93 ms |
73044 KB |
Output is correct |
30 |
Correct |
319 ms |
179752 KB |
Output is correct |
31 |
Correct |
363 ms |
189776 KB |
Output is correct |
32 |
Correct |
442 ms |
198500 KB |
Output is correct |
33 |
Correct |
627 ms |
215280 KB |
Output is correct |
34 |
Correct |
273 ms |
177648 KB |
Output is correct |
35 |
Correct |
600 ms |
215240 KB |
Output is correct |
36 |
Correct |
660 ms |
215244 KB |
Output is correct |
37 |
Correct |
609 ms |
215308 KB |
Output is correct |
38 |
Correct |
607 ms |
214960 KB |
Output is correct |
39 |
Correct |
625 ms |
215632 KB |
Output is correct |
40 |
Correct |
565 ms |
210256 KB |
Output is correct |
41 |
Correct |
605 ms |
215288 KB |
Output is correct |
42 |
Correct |
612 ms |
215536 KB |
Output is correct |
43 |
Correct |
405 ms |
207208 KB |
Output is correct |
44 |
Correct |
417 ms |
207064 KB |
Output is correct |
45 |
Correct |
421 ms |
207476 KB |
Output is correct |
46 |
Correct |
407 ms |
191600 KB |
Output is correct |
47 |
Correct |
403 ms |
180704 KB |
Output is correct |
48 |
Correct |
475 ms |
201468 KB |
Output is correct |
49 |
Correct |
500 ms |
201476 KB |
Output is correct |