Submission #880601

# Submission time Handle Problem Language Result Execution time Memory
880601 2023-11-29T17:18:37 Z _KuroNeko_ Race (IOI11_race) C++17
100 / 100
307 ms 40016 KB
#include<bits/stdc++.h>
// #include <ext/pb_ds/assoc_container.hpp>
// #include <ext/pb_ds/tree_policy.hpp>
// using namespace __gnu_pbds;
// #define ordered_set tree<ll, null_type, less_equal<ll>, rb_tree_tag, tree_order_statistics_node_update>
// #pragma GCC optimize("O3,unroll-loops")
// #pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
using namespace std;
typedef long long ll;
typedef long double ldb;
typedef vector<int> vi;
typedef vector<long long> vl;
typedef vector<double> vdb;
typedef vector<vector<int>> vvi;
typedef vector<vector<ll>> vvl;
typedef vector<string> vs;
typedef set<int> si;
typedef set<long long> sl;
typedef set<double> sdb;
typedef set<string> ss;
typedef set<char> sc;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
#define ftb(i, a, b) for (int i = a, _b = b; i <= _b; ++i)
#define ft(i, a, b) for (int i = a, _b = b; i < _b; ++i)
#define fgb(i, a, b) for (int i = a, _b = b; i >= _b; --i)
#define fg(i, a, b) for (int i = a, _b = b; i > _b; --i)
#define endl "\n"
const int N = 2*1e5;
const int K = 1e6;
int subtree[N + 1];
int dis[K + 1];
bool check[N + 1];
vector<pii> adj[N + 1];
int sz = 0;
void find_subtree(int node, int parent) {
    subtree[node] = 1;
    for (pii it : adj[node]) {
        if (it.first != parent && !check[it.first]) {
            find_subtree(it.first, node);
            subtree[node] += subtree[it.first];
        }
    }
}
int centroid(int node, int parent) {
    for (pii it : adj[node]) {
        if (it.first != parent && !check[it.first]) {
            if (subtree[it.first] > sz / 2) {
                return centroid(it.first, node);
            }
        }
    }
    return node;
}
void dfs(int node, int type, int parent, int depth, int length, int k, int& ans) {
    if (length > k) return;
    if (type == 3) {
        dis[length] = 1e9;
        for (pii it : adj[node]) {
            if (it.first != parent && !check[it.first]) {
                dfs(it.first, type, node, depth + 1, length + it.second, k, ans);
            }
        }
    }
    else if (type == 2) {
        dis[length] = min(dis[length], depth);
        for (pii it : adj[node]) {
            if (it.first != parent && !check[it.first]) {
                dfs(it.first, type, node, depth + 1, length + it.second, k, ans);
            }
        }
    }
    else {
        ans = min(ans, depth + dis[k - length]);
        for (pii it : adj[node]) {
            if (it.first != parent && !check[it.first]) {
                dfs(it.first, type, node, depth + 1, length + it.second, k, ans);
            }
        }
    }
}
void solve(int i, int& ans, int k) {
    find_subtree(i, -1);
    sz = subtree[i];
    int node = centroid(i, -1);
    check[node] = true;
    dis[0] = 0;
    for (pii it : adj[node]) {
        if (check[it.first]) continue;
        dfs(it.first, 1, -1, 1, it.second, k, ans);
        dfs(it.first, 2, -1, 1, it.second, k, ans);
    }
    dfs(node, 3, -1, 0, 0, k, ans);
    for (pii it : adj[node]) {
        if (!check[it.first]) solve(it.first, ans, k);
    }
}
int best_path(int n, int k, int h[][2], int l[]) {
    ftb(i, 0, k) {
        dis[i] = 1e9;
    }
    ft(i, 0, n - 1) {
        adj[h[i][0]].push_back({ h[i][1],l[i] });
        adj[h[i][1]].push_back({ h[i][0],l[i] });
    }
    int ans = 1e9;
    solve(0, ans, k);
    if (ans == 1e9) ans = -1;
    return ans;
}
// int main() {
//     int n, k;
//     cin >> n >> k;
//     int h[n - 1][2];
//     int l[n - 1];
//     ft(i, 0, n - 1) {
//         int x, y, z;
//         cin >> x >> y >> z;
//         h[i][0] = x;
//         h[i][1] = y;
//         l[i] = z;
//     }
//     cout << best_path(n, k, h, l);
// }
# Verdict Execution time Memory Grader output
1 Correct 2 ms 10588 KB Output is correct
2 Correct 2 ms 10588 KB Output is correct
3 Correct 2 ms 10700 KB Output is correct
4 Correct 2 ms 10704 KB Output is correct
5 Correct 2 ms 10588 KB Output is correct
6 Correct 2 ms 10704 KB Output is correct
7 Correct 2 ms 10700 KB Output is correct
8 Correct 2 ms 10588 KB Output is correct
9 Correct 2 ms 10588 KB Output is correct
10 Correct 2 ms 10588 KB Output is correct
11 Correct 2 ms 10588 KB Output is correct
12 Correct 2 ms 10588 KB Output is correct
13 Correct 2 ms 10588 KB Output is correct
14 Correct 2 ms 10588 KB Output is correct
15 Correct 2 ms 10592 KB Output is correct
16 Correct 2 ms 10592 KB Output is correct
17 Correct 2 ms 10592 KB Output is correct
18 Correct 2 ms 10592 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 10588 KB Output is correct
2 Correct 2 ms 10588 KB Output is correct
3 Correct 2 ms 10700 KB Output is correct
4 Correct 2 ms 10704 KB Output is correct
5 Correct 2 ms 10588 KB Output is correct
6 Correct 2 ms 10704 KB Output is correct
7 Correct 2 ms 10700 KB Output is correct
8 Correct 2 ms 10588 KB Output is correct
9 Correct 2 ms 10588 KB Output is correct
10 Correct 2 ms 10588 KB Output is correct
11 Correct 2 ms 10588 KB Output is correct
12 Correct 2 ms 10588 KB Output is correct
13 Correct 2 ms 10588 KB Output is correct
14 Correct 2 ms 10588 KB Output is correct
15 Correct 2 ms 10592 KB Output is correct
16 Correct 2 ms 10592 KB Output is correct
17 Correct 2 ms 10592 KB Output is correct
18 Correct 2 ms 10592 KB Output is correct
19 Correct 2 ms 10688 KB Output is correct
20 Correct 2 ms 10588 KB Output is correct
21 Correct 2 ms 10588 KB Output is correct
22 Correct 3 ms 12640 KB Output is correct
23 Correct 3 ms 12636 KB Output is correct
24 Correct 3 ms 12636 KB Output is correct
25 Correct 3 ms 12636 KB Output is correct
26 Correct 3 ms 10716 KB Output is correct
27 Correct 3 ms 12636 KB Output is correct
28 Correct 4 ms 10704 KB Output is correct
29 Correct 2 ms 10692 KB Output is correct
30 Correct 3 ms 10592 KB Output is correct
31 Correct 3 ms 12640 KB Output is correct
32 Correct 3 ms 12736 KB Output is correct
33 Correct 3 ms 12648 KB Output is correct
34 Correct 4 ms 12784 KB Output is correct
35 Correct 3 ms 12740 KB Output is correct
36 Correct 3 ms 12648 KB Output is correct
37 Correct 3 ms 12648 KB Output is correct
38 Correct 3 ms 12648 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 10588 KB Output is correct
2 Correct 2 ms 10588 KB Output is correct
3 Correct 2 ms 10700 KB Output is correct
4 Correct 2 ms 10704 KB Output is correct
5 Correct 2 ms 10588 KB Output is correct
6 Correct 2 ms 10704 KB Output is correct
7 Correct 2 ms 10700 KB Output is correct
8 Correct 2 ms 10588 KB Output is correct
9 Correct 2 ms 10588 KB Output is correct
10 Correct 2 ms 10588 KB Output is correct
11 Correct 2 ms 10588 KB Output is correct
12 Correct 2 ms 10588 KB Output is correct
13 Correct 2 ms 10588 KB Output is correct
14 Correct 2 ms 10588 KB Output is correct
15 Correct 2 ms 10592 KB Output is correct
16 Correct 2 ms 10592 KB Output is correct
17 Correct 2 ms 10592 KB Output is correct
18 Correct 2 ms 10592 KB Output is correct
19 Correct 100 ms 18296 KB Output is correct
20 Correct 125 ms 18312 KB Output is correct
21 Correct 90 ms 18260 KB Output is correct
22 Correct 84 ms 18264 KB Output is correct
23 Correct 52 ms 18652 KB Output is correct
24 Correct 39 ms 18412 KB Output is correct
25 Correct 89 ms 21844 KB Output is correct
26 Correct 79 ms 25604 KB Output is correct
27 Correct 109 ms 24148 KB Output is correct
28 Correct 154 ms 38480 KB Output is correct
29 Correct 153 ms 37460 KB Output is correct
30 Correct 106 ms 24148 KB Output is correct
31 Correct 124 ms 24144 KB Output is correct
32 Correct 115 ms 24292 KB Output is correct
33 Correct 145 ms 22852 KB Output is correct
34 Correct 117 ms 24040 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 10588 KB Output is correct
2 Correct 2 ms 10588 KB Output is correct
3 Correct 2 ms 10700 KB Output is correct
4 Correct 2 ms 10704 KB Output is correct
5 Correct 2 ms 10588 KB Output is correct
6 Correct 2 ms 10704 KB Output is correct
7 Correct 2 ms 10700 KB Output is correct
8 Correct 2 ms 10588 KB Output is correct
9 Correct 2 ms 10588 KB Output is correct
10 Correct 2 ms 10588 KB Output is correct
11 Correct 2 ms 10588 KB Output is correct
12 Correct 2 ms 10588 KB Output is correct
13 Correct 2 ms 10588 KB Output is correct
14 Correct 2 ms 10588 KB Output is correct
15 Correct 2 ms 10592 KB Output is correct
16 Correct 2 ms 10592 KB Output is correct
17 Correct 2 ms 10592 KB Output is correct
18 Correct 2 ms 10592 KB Output is correct
19 Correct 2 ms 10688 KB Output is correct
20 Correct 2 ms 10588 KB Output is correct
21 Correct 2 ms 10588 KB Output is correct
22 Correct 3 ms 12640 KB Output is correct
23 Correct 3 ms 12636 KB Output is correct
24 Correct 3 ms 12636 KB Output is correct
25 Correct 3 ms 12636 KB Output is correct
26 Correct 3 ms 10716 KB Output is correct
27 Correct 3 ms 12636 KB Output is correct
28 Correct 4 ms 10704 KB Output is correct
29 Correct 2 ms 10692 KB Output is correct
30 Correct 3 ms 10592 KB Output is correct
31 Correct 3 ms 12640 KB Output is correct
32 Correct 3 ms 12736 KB Output is correct
33 Correct 3 ms 12648 KB Output is correct
34 Correct 4 ms 12784 KB Output is correct
35 Correct 3 ms 12740 KB Output is correct
36 Correct 3 ms 12648 KB Output is correct
37 Correct 3 ms 12648 KB Output is correct
38 Correct 3 ms 12648 KB Output is correct
39 Correct 100 ms 18296 KB Output is correct
40 Correct 125 ms 18312 KB Output is correct
41 Correct 90 ms 18260 KB Output is correct
42 Correct 84 ms 18264 KB Output is correct
43 Correct 52 ms 18652 KB Output is correct
44 Correct 39 ms 18412 KB Output is correct
45 Correct 89 ms 21844 KB Output is correct
46 Correct 79 ms 25604 KB Output is correct
47 Correct 109 ms 24148 KB Output is correct
48 Correct 154 ms 38480 KB Output is correct
49 Correct 153 ms 37460 KB Output is correct
50 Correct 106 ms 24148 KB Output is correct
51 Correct 124 ms 24144 KB Output is correct
52 Correct 115 ms 24292 KB Output is correct
53 Correct 145 ms 22852 KB Output is correct
54 Correct 117 ms 24040 KB Output is correct
55 Correct 8 ms 11120 KB Output is correct
56 Correct 9 ms 11272 KB Output is correct
57 Correct 62 ms 18516 KB Output is correct
58 Correct 28 ms 18116 KB Output is correct
59 Correct 78 ms 25476 KB Output is correct
60 Correct 307 ms 40016 KB Output is correct
61 Correct 138 ms 24240 KB Output is correct
62 Correct 135 ms 26448 KB Output is correct
63 Correct 222 ms 26452 KB Output is correct
64 Correct 261 ms 26448 KB Output is correct
65 Correct 158 ms 24916 KB Output is correct
66 Correct 265 ms 37240 KB Output is correct
67 Correct 86 ms 27088 KB Output is correct
68 Correct 147 ms 27192 KB Output is correct
69 Correct 157 ms 27116 KB Output is correct
70 Correct 162 ms 26708 KB Output is correct