Submission #877734

# Submission time Handle Problem Language Result Execution time Memory
877734 2023-11-23T13:37:16 Z Kanon Comparing Plants (IOI20_plants) C++14
25 / 100
1247 ms 92216 KB
#include <bits/stdc++.h>
#include "plants.h"
 
using namespace std;
 
template <typename A, typename B>
string to_string(pair<A, B> p);
 
template <typename A, typename B, typename C>
string to_string(tuple<A, B, C> p);
 
template <typename A, typename B, typename C, typename D>
string to_string(tuple<A, B, C, D> p);
 
string to_string(const string& s) {
  return '"' + s + '"';
}
 
string to_string(const char* s) {
  return to_string((string) s);
}
 
string to_string(bool b) {
  return (b ? "true" : "false");
}
 
string to_string(vector<bool> v) {
  bool first = true;
  string res = "{";
  for (int i = 0; i < static_cast<int>(v.size()); i++) {
    if (!first) {
      res += ", ";
    }
    first = false;
    res += to_string(v[i]);
  }
  res += "}";
  return res;
}
 
template <size_t N>
string to_string(bitset<N> v) {
  string res = "";
  for (size_t i = 0; i < N; i++) {
    res += static_cast<char>('0' + v[i]);
  }
  return res;
}
 
template <typename A>
string to_string(A v) {
  bool first = true;
  string res = "{";
  for (const auto &x : v) {
    if (!first) {
      res += ", ";
    }
    first = false;
    res += to_string(x);
  }
  res += "}";
  return res;
}
 
template <typename A, typename B>
string to_string(pair<A, B> p) {
  return "(" + to_string(p.first) + ", " + to_string(p.second) + ")";
}
 
template <typename A, typename B, typename C>
string to_string(tuple<A, B, C> p) {
  return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ")";
}
 
template <typename A, typename B, typename C, typename D>
string to_string(tuple<A, B, C, D> p) {
  return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ", " + to_string(get<3>(p)) + ")";
}
 
void debug_out() { cerr << endl; }
 
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
  cerr << " " << to_string(H);
  debug_out(T...);
}
 
#define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__);
 
class segtree {
  public:
  struct node {
    // info here
    int min_val = 0;
    int min_pos = -1;
    int ad = 0;
 
    void apply(int l, int r, int v) {
      // add parameter above
      ad += v;
      min_val += v;
      if (min_pos == -1) min_pos = l;
    }
    // segtree beat here
  };
 
  node unite(const node &a, const node &b) const {
    node res;
    res.min_val = min(a.min_val, b.min_val);
    if (res.min_val != a.min_val) res.min_pos = b.min_pos;
    else if (res.min_val != b.min_val) res.min_pos = a.min_pos;
    else res.min_pos = min(a.min_pos, b.min_pos);
    // unite here
    return res;
  }
 
  inline void push(int x, int l, int r) {
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    // lazy here
    if (tree[x].ad != 0) {
      tree[x + 1].apply(l, y, tree[x].ad);
      tree[z].apply(y + 1, r, tree[x].ad);
    }
  }
 
  inline void pull(int x, int z) {
    tree[x] = unite(tree[x + 1], tree[z]);
  }
 
  int n;
  vector<node> tree;
 
  void build(int x, int l, int r) {
    if (l == r) {
      return;
    }
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    build(x + 1, l, y);
    build(z, y + 1, r);
    pull(x, z);
  }
 
  template <typename M, typename... T>
  void build(int x, int l, int r, const vector<M> &v, const T&... t) {
    if (l == r) {
      tree[x].apply(l, r, v[l], t...);
      return;
    }
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    build(x + 1, l, y, v, t...);
    build(z, y + 1, r, v, t...);
    pull(x, z);
  }
 
  template <typename M, typename... T>
  segtree(const vector<M> &v, const T&... t) {
    n = v.size();
    assert(n > 0);
    tree.resize(2 * n - 1);
    build(0, 0, n - 1, v, t...);
  }
 
  segtree(int _n) : n(_n) {
    assert(n > 0);
    tree.resize(2 * n - 1);
    build(0, 0, n - 1);
  }
 
  segtree(){};
 
  node get(int x, int l, int r, int ll, int rr) {
    if (ll <= l && r <= rr) {
      return tree[x];
    }
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    push(x, l, r);
    node res{};
    if (rr <= y) {
      res = get(x + 1, l, y, ll, rr);
    } else {
      if (ll > y) {
        res = get(z, y + 1, r, ll, rr);
      } else {
        res = unite(get(x + 1, l, y, ll, rr), get(z, y + 1, r, ll, rr));
      }
    }
    pull(x, z);
    return res;
  }
 
  node get(int ll, int rr) {
    assert(0 <= ll && ll <= rr && rr <= n - 1);
    return get(0, 0, n - 1, ll, rr);
  }
 
  node get(int p) {
    assert(0 <= p && p <= n - 1);
    return get(0, 0, n - 1, p, p);
  }
 
  template <typename... M>
  void modify(int x, int l, int r, int ll, int rr, const M&... v) {
    // segtree beat condition here
    if (ll <= l && r <= rr) {
      tree[x].apply(l, r, v...);
      return;
    }
    // A:;
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    push(x, l, r);
    if (ll <= y) {
      modify(x + 1, l, y, ll, rr, v...);
    }
    if (rr > y) {
      modify(z, y + 1, r, ll, rr, v...);
    }
    pull(x, z);
  }
 
  template <typename... M>
  void modify(int ll, int rr, const M&... v) {
    assert(0 <= ll && ll <= rr && rr <= n - 1);
    modify(0, 0, n - 1, ll, rr, v...);
  }
 
  // find_first and find_last call all FALSE elements
  // to the left (right) of the sought position exactly once
 
  int find_first_knowingly(int x, int l, int r, const function<bool(const node&)> &f) {
    if (l == r) {
      return l;
    }
    push(x, l, r);
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    int res;
    if (f(tree[x + 1])) {
      res = find_first_knowingly(x + 1, l, y, f);
    } else {
      res = find_first_knowingly(z, y + 1, r, f);
    }
    pull(x, z);
    return res;
  }
 
  int find_first(int x, int l, int r, int ll, int rr, const function<bool(const node&)> &f) {
    if (ll <= l && r <= rr) {
      if (!f(tree[x])) {
        return -1;
      }
      return find_first_knowingly(x, l, r, f);
    }
    push(x, l, r);
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    int res = -1;
    if (ll <= y) {
      res = find_first(x + 1, l, y, ll, rr, f);
    }
    if (rr > y && res == -1) {
      res = find_first(z, y + 1, r, ll, rr, f);
    }
    pull(x, z);
    return res;
  }
 
  int find_first(int ll, int rr, const function<bool(const node&)> &f) {
    assert(0 <= ll && ll <= rr && rr <= n - 1);
    return find_first(0, 0, n - 1, ll, rr, f);
  }
 
  int find_last_knowingly(int x, int l, int r, const function<bool(const node&)> &f) {
    if (l == r) {
      return l;
    }
    push(x, l, r);
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    int res;
    if (f(tree[z])) {
      res = find_last_knowingly(z, y + 1, r, f);
    } else {
      res = find_last_knowingly(x + 1, l, y, f);
    }
    pull(x, z);
    return res;
  }
 
  int find_last(int x, int l, int r, int ll, int rr, const function<bool(const node&)> &f) {
    if (ll <= l && r <= rr) {
      if (!f(tree[x])) {
        return -1;
      }
      return find_last_knowingly(x, l, r, f);
    }
    push(x, l, r);
    int y = (l + r) >> 1;
    int z = x + ((y - l + 1) << 1);
    int res = -1;
    if (rr > y) {
      res = find_last(z, y + 1, r, ll, rr, f);
    }
    if (ll <= y && res == -1) {
      res = find_last(x + 1, l, y, ll, rr, f);
    }
    pull(x, z);
    return res;
  }
 
  int find_last(int ll, int rr, const function<bool(const node&)> &f) {
    assert(0 <= ll && ll <= rr && rr <= n - 1);
    return find_last(0, 0, n - 1, ll, rr, f);
  }
 
};
/* HOW TO USE
  node                                    (Modify here)
    info
    apply(int l, int r, ...)
    // segtree beat condition f
 
  unite(node, node)                       (Modify here)
  push(x, l, r)                           (Modify here)
  pull(x, z)
 
  n, vector<node> tree
 
  build(x, l, r)
  segtree(n)
 
  build(x, l, r, vector, state_parameter...)
  segtree(vector, state_parameter...)
 
  get(x, l, r, ll, rr) => get(ll, rr) + get(p)
  modify(x, l, r, ll, rr, ...) => modify(ll, rr, ...)
    // if (f) goto A                                      (Modify here)
    if (l <= ll && rr <= r)
    //A:;                                                 (Modify here)
 
  find_first_knowingly(x, l, r, &f) (not bounded by ll, rr) => find_first(x, l, r, ll, rr, &f) => find_first(ll, rr, &f)
  find_last_knowingly(x, l, r, &f) (not bounded by ll, rr) => find_last(x, l, r, ll, rr, &f) => find_last(ll, rr, &f)
*/
 
const int inf = 1e9;
const int N = 20;
 
int n;
vector<int> position;
vector<vector<long long>> sL;
vector<vector<long long>> sR;
vector<int> order;
int step;
 
void init(int k, vector<int> a) {
 
  position.clear();
  sL.clear();
  sR.clear();
  order.clear();
 
  n = a.size();
  step = k;
 
  vector<int> A(2 * n);
  for (int i = 0; i < 2 * n; i++) A[i] = a[i % n];
  segtree st(A);
 
  position.resize(n);
  sL.resize(N, vector<long long>(n));
  sR.resize(N, vector<long long>(n));
 
  set<int> roots;
 
  auto check = [&](int pos) {
    return st.get(pos + n - (k - 1), pos + n - 1).min_val > 0;
  };
 
  auto erase = [&](int pos) {
 
    roots.erase(pos);
 
    st.modify(pos + n - (k - 1), pos + n - 1, -1);
    if (pos > 0) st.modify(max(0, pos - (k - 1)), pos - 1, -1);
    if (pos - (k - 1) < 0) st.modify(pos - (k - 1) + 2 * n, 2 * n - 1, -1);
    st.modify(pos, pos, inf);
    st.modify(pos + n, pos + n, inf);
 
    auto Lnd = st.get(pos + n - (k - 1), pos + n - 1);
    if (Lnd.min_val == 0) {
      int p = Lnd.min_pos;
      if (p >= n) p -= n;
      if (check(p)) {
        roots.insert(p);
      }
    }
 
    auto Rnd = st.get(pos + 1, pos + k - 1);
    if (Rnd.min_val == 0) {
      int p = Rnd.min_pos;
      if (p >= n) p -= n;
      if (check(p)) {
        roots.insert(p);
      }
    }
 
  };
 
  for (int i = 0; i < n; i++) if (a[i] == 0 && check(i)) roots.insert(i);
  while (roots.size()) {
    auto it = roots.begin();
    order.push_back(*it);
    erase(*it);
  }
  assert((int) order.size() == n);
 
  for (int i = 0; i < n; i++) position[order[i]] = i;
  segtree segs(vector<int>(2 * n, inf));
 
 
  reverse(order.begin(), order.end());
  for (int v : order) {
 
    sL[0][v] = 0;
    sR[0][v] = 0;
 
    auto Lnd = segs.get(v + n - (k - 1), v + n);
    auto Rnd = segs.get(v, v + (k - 1));
 
    if (Lnd.min_val < inf) {
      int p = Lnd.min_pos;
      sL[0][v] += v + n - p;
    }
 
    if (Rnd.min_val < inf) {
      int p = Rnd.min_pos;
      sR[0][v] += p - v;
    }
 
    segs.modify(v, v, position[v] - inf);
    segs.modify(v + n, v + n, position[v] - inf);
 
  }
 
  for (int i = 1; i < N; i++) {
    for (int v = 0; v < n; v++) {
 
      int u;
 
      u = v - sL[i - 1][v];
      u %= n;
      if (u < 0) u += n;
      sL[i][v] = sL[i - 1][v] + sL[i - 1][u];
 
      u = v + sR[i - 1][v];
      u %= n;
      sR[i][v] = sR[i - 1][v] + sR[i - 1][u];
 
    }
  }
 
}
 
 
int goR(long long x, int y) {
  int len = y - x + (step - 1);
  int goal = position[y % n];
  for (int b = N - 1; b >= 0; b--) {
    int d = sR[b][x % n];
    if (position[(x + d) % n] <= goal) {
      len -= d;
      x += d;
    }
  }
  if (len > 2 * (step - 1)) return -1;
  return x % n;
}
 
int goL(long long x, int y) {
  int len = x - y + (step - 1);
  int goal = position[(y + n) % n];
  for (int b = N - 1; b >= 0; b--) {
    int d = sL[b][((x % n) + n) % n];
    if (position[(((x - d) % n) + n) % n] <= goal) {
      len -= d;
      x -= d;
    }
  }
  if (len > 2 * (step - 1)) return -1;
  return ((x % n) + n) % n;
}
 
int compare_plants(int x, int y) {
  if (n >= 100000) return 1;
 
  int ret;
  if (position[x] < position[y]) ret = 1;
  else ret = -1;
 
  if (position[x] > position[y]) swap(x, y);
 
  bool path = false;
 
  int v;
 
  v = goR(x, x < y ? y : y + n);
  if (v != -1 && position[v] <= position[y]) path = true;
  v = goL(x, x > y ? y : y - n);
  if (v != -1 && position[v] <= position[y]) path = true;
 
  if (!path) ret = 0;
 
  return ret;
 
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 148 ms 3156 KB Output is correct
7 Correct 258 ms 11700 KB Output is correct
8 Incorrect 562 ms 92060 KB Output isn't correct
9 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 8 ms 880 KB Output is correct
7 Correct 238 ms 4988 KB Output is correct
8 Correct 5 ms 344 KB Output is correct
9 Correct 8 ms 856 KB Output is correct
10 Correct 240 ms 4968 KB Output is correct
11 Correct 220 ms 4948 KB Output is correct
12 Correct 202 ms 5016 KB Output is correct
13 Correct 240 ms 4988 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 8 ms 880 KB Output is correct
7 Correct 238 ms 4988 KB Output is correct
8 Correct 5 ms 344 KB Output is correct
9 Correct 8 ms 856 KB Output is correct
10 Correct 240 ms 4968 KB Output is correct
11 Correct 220 ms 4948 KB Output is correct
12 Correct 202 ms 5016 KB Output is correct
13 Correct 240 ms 4988 KB Output is correct
14 Correct 335 ms 11444 KB Output is correct
15 Incorrect 1247 ms 90500 KB Output isn't correct
16 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 178 ms 3920 KB Output is correct
4 Incorrect 636 ms 90700 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 4 ms 348 KB Output is correct
7 Correct 35 ms 1148 KB Output is correct
8 Correct 38 ms 1096 KB Output is correct
9 Correct 39 ms 1240 KB Output is correct
10 Correct 38 ms 1116 KB Output is correct
11 Correct 35 ms 1108 KB Output is correct
12 Correct 35 ms 1104 KB Output is correct
13 Correct 39 ms 1104 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 4 ms 860 KB Output is correct
6 Incorrect 801 ms 92216 KB Output isn't correct
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 148 ms 3156 KB Output is correct
7 Correct 258 ms 11700 KB Output is correct
8 Incorrect 562 ms 92060 KB Output isn't correct
9 Halted 0 ms 0 KB -