Submission #877101

# Submission time Handle Problem Language Result Execution time Memory
877101 2023-11-22T21:32:33 Z maroonrk Overtaking (IOI23_overtaking) C++17
100 / 100
661 ms 74988 KB
#include "overtaking.h"

#ifndef LOCAL
#pragma GCC optimize ("Ofast")
#pragma GCC optimize ("unroll-loops")
#endif

#include <bits/stdc++.h>
using namespace std;

using ll=long long;
#define int ll

#define rng(i,a,b) for(int i=int(a);i<int(b);i++)
#define rep(i,b) rng(i,0,b)
#define gnr(i,a,b) for(int i=int(b)-1;i>=int(a);i--)
#define per(i,b) gnr(i,0,b)
#define pb push_back
#define eb emplace_back
#define a first
#define b second
#define bg begin()
#define ed end()
#define all(x) x.bg,x.ed
#define si(x) int(x.size())
#ifdef LOCAL
#define dmp(x) cerr<<__LINE__<<" "<<#x<<" "<<x<<endl
#else
#define dmp(x) void(0)
#endif

template<class t,class u> bool chmax(t&a,u b){if(a<b){a=b;return true;}else return false;}
template<class t,class u> bool chmin(t&a,u b){if(b<a){a=b;return true;}else return false;}

template<class t> using vc=vector<t>;
template<class t> using vvc=vc<vc<t>>;

using pi=pair<int,int>;
using vi=vc<int>;

template<class t,class u>
ostream& operator<<(ostream& os,const pair<t,u>& p){
	return os<<"{"<<p.a<<","<<p.b<<"}";
}

template<class t> ostream& operator<<(ostream& os,const vc<t>& v){
	os<<"{";
	for(auto e:v)os<<e<<",";
	return os<<"}";
}

#define mp make_pair
#define mt make_tuple
#define one(x) memset(x,-1,sizeof(x))
#define zero(x) memset(x,0,sizeof(x))
#ifdef LOCAL
void dmpr(ostream&os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
	os<<t<<" ";
	dmpr(os,args...);
}
#define dmp2(...) dmpr(cerr,__LINE__,##__VA_ARGS__)
#else
#define dmp2(...) void(0)
#endif

using uint=unsigned;
using ull=unsigned long long;

template<class t,size_t n>
ostream& operator<<(ostream&os,const array<t,n>&a){
	return os<<vc<t>(all(a));
}

template<int i,class T>
void print_tuple(ostream&,const T&){
}

template<int i,class T,class H,class ...Args>
void print_tuple(ostream&os,const T&t){
	if(i)os<<",";
	os<<get<i>(t);
	print_tuple<i+1,T,Args...>(os,t);
}

template<class ...Args>
ostream& operator<<(ostream&os,const tuple<Args...>&t){
	os<<"{";
	print_tuple<0,tuple<Args...>,Args...>(os,t);
	return os<<"}";
}

ll read(){
	ll i;
	cin>>i;
	return i;
}

vi readvi(int n,int off=0){
	vi v(n);
	rep(i,n)v[i]=read()+off;
	return v;
}

pi readpi(int off=0){
	int a,b;cin>>a>>b;
	return pi(a+off,b+off);
}

template<class t>
void print_single(t x,int suc=1){
	cout<<x;
	if(suc==1)
		cout<<"\n";
	if(suc==2)
		cout<<" ";
}

template<class t,class u>
void print_single(const pair<t,u>&p,int suc=1){
	print_single(p.a,2);
	print_single(p.b,suc);
}

template<class T>
void print_single(const vector<T>&v,int suc=1){
	rep(i,v.size())
		print_single(v[i],i==int(v.size())-1?suc:2);
}

template<class T>
void print_offset(const vector<T>&v,ll off,int suc=1){
	rep(i,v.size())
		print_single(v[i]+off,i==int(v.size())-1?suc:2);
}

template<class T,size_t N>
void print_single(const array<T,N>&v,int suc=1){
	rep(i,N)
		print_single(v[i],i==int(N)-1?suc:2);
}

template<class T>
void print(const T&t){
	print_single(t);
}

template<class T,class ...Args>
void print(const T&t,const Args&...args){
	print_single(t,2);
	print(args...);
}

string readString(){
	string s;
	cin>>s;
	return s;
}

template<class T>
T sq(const T& t){
	return t*t;
}

void YES(bool ex=true){
	cout<<"YES\n";
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void NO(bool ex=true){
	cout<<"NO\n";
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void Yes(bool ex=true){
	cout<<"Yes\n";
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void No(bool ex=true){
	cout<<"No\n";
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
//#define CAPITAL
/*
void yes(bool ex=true){
	#ifdef CAPITAL
	cout<<"YES"<<"\n";
	#else
	cout<<"Yes"<<"\n";
	#endif
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void no(bool ex=true){
	#ifdef CAPITAL
	cout<<"NO"<<"\n";
	#else
	cout<<"No"<<"\n";
	#endif
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}*/
void possible(bool ex=true){
	#ifdef CAPITAL
	cout<<"POSSIBLE"<<"\n";
	#else
	cout<<"Possible"<<"\n";
	#endif
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void impossible(bool ex=true){
	#ifdef CAPITAL
	cout<<"IMPOSSIBLE"<<"\n";
	#else
	cout<<"Impossible"<<"\n";
	#endif
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}

constexpr ll ten(int n){
	return n==0?1:ten(n-1)*10;
}

const ll infLL=LLONG_MAX/3;

#ifdef int
const int inf=infLL;
#else
const int inf=INT_MAX/2-100;
#endif

int topbit(signed t){
	return t==0?-1:31-__builtin_clz(t);
}
int topbit(ll t){
	return t==0?-1:63-__builtin_clzll(t);
}
int topbit(ull t){
	return t==0?-1:63-__builtin_clzll(t);
}
int botbit(signed a){
	return a==0?32:__builtin_ctz(a);
}
int botbit(ll a){
	return a==0?64:__builtin_ctzll(a);
}
int botbit(ull a){
	return a==0?64:__builtin_ctzll(a);
}
int popcount(signed t){
	return __builtin_popcount(t);
}
int popcount(ll t){
	return __builtin_popcountll(t);
}
int popcount(ull t){
	return __builtin_popcountll(t);
}
int bitparity(ll t){
	return __builtin_parityll(t);
}
bool ispow2(int i){
	return i&&(i&-i)==i;
}
ll mask(int i){
	return (ll(1)<<i)-1;
}
ull umask(int i){
	return (ull(1)<<i)-1;
}
ll minp2(ll n){
	if(n<=1)return 1;
	else return ll(1)<<(topbit(n-1)+1);
}

bool inc(int a,int b,int c){
	return a<=b&&b<=c;
}

template<class t> void mkuni(vc<t>&v){
	sort(all(v));
	v.erase(unique(all(v)),v.ed);
}

ll rand_int(ll l, ll r) { //[l, r]
	//#ifdef LOCAL
	static mt19937_64 gen;
	/*#else
	static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());
	#endif*/
	return uniform_int_distribution<ll>(l, r)(gen);
}

ll rand_int(ll k){ //[0,k)
	return rand_int(0,k-1);
}

template<class t>
void myshuffle(vc<t>&a){
	rep(i,si(a))swap(a[i],a[rand_int(0,i)]);
}

template<class t,class u>
int lwb(const vc<t>&v,const u&a){
	return lower_bound(all(v),a)-v.bg;
}
template<class t,class u>
bool bis(const vc<t>&v,const u&a){
	return binary_search(all(v),a);
}

vvc<int> readGraph(int n,int m){
	vvc<int> g(n);
	rep(i,m){
		int a,b;
		cin>>a>>b;
		//sc.read(a,b);
		a--;b--;
		g[a].pb(b);
		g[b].pb(a);
	}
	return g;
}

vvc<int> readTree(int n){
	return readGraph(n,n-1);
}

template<class t>
vc<t> presum(const vc<t>&a){
	vc<t> s(si(a)+1);
	rep(i,si(a))s[i+1]=s[i]+a[i];
	return s;
}
vc<ll> presum(const vi&a){
	vc<ll> s(si(a)+1);
	rep(i,si(a))s[i+1]=s[i]+a[i];
	return s;
}
//BIT で数列を管理するときに使う (CF850C)
template<class t>
vc<t> predif(vc<t> a){
	gnr(i,1,si(a))a[i]-=a[i-1];
	return a;
}
template<class t>
vvc<ll> imos(const vvc<t>&a){
	int n=si(a),m=si(a[0]);
	vvc<ll> b(n+1,vc<ll>(m+1));
	rep(i,n)rep(j,m)
		b[i+1][j+1]=b[i+1][j]+b[i][j+1]-b[i][j]+a[i][j];
	return b;
}

//verify してないや
void transvvc(int&n,int&m){
	swap(n,m);
}
template<class t,class... Args>
void transvvc(int&n,int&m,vvc<t>&a,Args&...args){
	assert(si(a)==n);
	vvc<t> b(m,vi(n));
	rep(i,n){
		assert(si(a[i])==m);
		rep(j,m)b[j][i]=a[i][j];
	}
	a.swap(b);
	transvvc(n,m,args...);
}
//CF854E
void rotvvc(int&n,int&m){
	swap(n,m);
}
template<class t,class... Args>
void rotvvc(int&n,int&m,vvc<t>&a,Args&...args){
	assert(si(a)==n);
	vvc<t> b(m,vi(n));
	rep(i,n){
		assert(si(a[i])==m);
		rep(j,m)b[m-1-j][i]=a[i][j];
	}
	a.swap(b);
	rotvvc(n,m,args...);
}

//ソートして i 番目が idx[i]
//CF850C
template<class t>
vi sortidx(const vc<t>&a){
	int n=si(a);
	vi idx(n);iota(all(idx),0);
	sort(all(idx),[&](int i,int j){return a[i]<a[j];});
	return idx;
}
//vs[i]=a[idx[i]]
//例えば sortidx で得た idx を使えば単にソート列になって返ってくる
//CF850C
template<class t>
vc<t> a_idx(const vc<t>&a,const vi&idx){
	int n=si(a);
	assert(si(idx)==n);
	vc<t> vs(n);
	rep(i,n)vs[i]=a[idx[i]];
	return vs;
}
//CF850C
vi invperm(const vi&p){
	int n=si(p);
	vi q(n);
	rep(i,n)q[p[i]]=i;
	return q;
}

template<class t,class s=t>
s SUM(const vc<t>&a){
	return accumulate(all(a),s(0));
}

template<class t>
t MAX(const vc<t>&a){
	return *max_element(all(a));
}

template<class t>
pair<t,int> MAXi(const vc<t>&a){
	auto itr=max_element(all(a));
	return mp(*itr,itr-a.bg);
}

template<class t>
t MIN(const vc<t>&a){
	return *min_element(all(a));
}

template<class t>
pair<t,int> MINi(const vc<t>&a){
	auto itr=min_element(all(a));
	return mp(*itr,itr-a.bg);
}

vi vid(int n){
	vi res(n);iota(all(res),0);
	return res;
}

template<class S>
void soin(S&s){
	sort(all(s));
}

template<class S,class F>
void soin(S&s,F&&f){
	sort(all(s),forward<F>(f));
}

template<class S>
S soout(S s){
	soin(s);
	return s;
}

template<class S>
void rein(S&s){
	reverse(all(s));
}

template<class S>
S reout(S s){
	rein(s);
	return s;
}

template<class t,class u>
pair<t,u>&operator+=(pair<t,u>&a,pair<t,u> b){
	a.a+=b.a;a.b+=b.b;return a;}
template<class t,class u>
pair<t,u>&operator-=(pair<t,u>&a,pair<t,u> b){
	a.a-=b.a;a.b-=b.b;return a;}
template<class t,class u>
pair<t,u> operator+(pair<t,u> a,pair<t,u> b){return mp(a.a+b.a,a.b+b.b);}
template<class t,class u>
pair<t,u> operator-(pair<t,u> a,pair<t,u> b){return mp(a.a-b.a,a.b-b.b);}

template<class t>
t gpp(vc<t>&vs){
	assert(si(vs));
	t res=move(vs.back());
	vs.pop_back();
	return res;
}

template<class t,class u>
void pb(vc<t>&a,const vc<u>&b){
	a.insert(a.ed,all(b));
}

template<class t,class...Args>
vc<t> cat(vc<t> a,Args&&...b){
	(pb(a,forward<Args>(b)),...);
	return a;
}

template<class t,class u>
vc<t>& operator+=(vc<t>&a,u x){
	for(auto&v:a)v+=x;
	return a;
}

template<class t,class u>
vc<t> operator+(vc<t> a,u x){
	return a+=x;
}

template<class t,class u>
vc<t>& operator-=(vc<t>&a,u x){
	for(auto&v:a)v-=x;
	return a;
}

template<class t,class u>
vc<t>& operator-(vc<t> a,u x){
	return a-=x;
}

template<class t,class u>
void remval(vc<t>&a,const u&v){
	a.erase(remove(all(a),v),a.ed);
}

template<class t,class u>
void fila(vc<t>&vs,const u&a){
	fill(all(vs),a);
}

bool dbg=false;
int sgn(__int128_t a){
	return a>0?1:(a<0?-1:0);
}

__int128_t crs(pi a,pi b){
	return (__int128_t)a.a*b.b-(__int128_t)a.b*b.a;
}

int ccw(pi a,pi b){
	return sgn(crs(a,b));
}

int ccw(pi a,pi b,pi c){
	return sgn(crs(b-a,c-a));
}

//x 座標の昇順に追加しているとして,上に凸になるようにしている
void add_convex(vc<pi>&ps,pi v){
	while(si(ps)>=2&&ccw(ps[si(ps)-2],ps[si(ps)-1],v)>=0)ps.pop_back();
	ps.pb(v);
}

//f(lw)=true,f(up)=false
template<class F>
int find_max_true(int lw,int up,F f){
	while(up-lw>1){
		const int mid=(lw+up)/2;
		if(f(mid))lw=mid;
		else up=mid;
	}
	return lw;
}

ll fdiv(ll a, ll b) { // floored division
	return a / b - ((a ^ b) < 0 && a % b); }

ll cdiv(ll a, ll b) { // ceiled division
	return a / b + ((a ^ b) > 0 && a % b); }

vi pos;
struct Convex{
	int cur,lasts;
	vc<pi> xy;
	Convex(int cc):cur(cc),lasts(-1){}
	void add_point(pi p){
		assert(lasts<=p.a);
		lasts=p.a;
		
		add_convex(xy,p);
	}
	int sub(int x)const{
		assert(si(xy));
		int p=find_max_true(0,si(xy),[&](int i){
			return xy[i-1].a+xy[i-1].b*x<xy[i].a+xy[i].b*x;
		});
		return xy[p].a+xy[p].b*x;
	}
	pi query(int z)const{
		assert(lasts<z);
		if(xy.empty())return pi(inf,z);
		int p=find_max_true(0,si(xy),[&](int i){
			return ccw(xy[i-1],xy[i],pi(z,0))<0;
		});
		int x=cdiv(z-xy[p].a,xy[p].b);
		int use=lwb(pos,pos[cur]+x);
		if(use==si(pos))return pi(inf,z);
		return pi(use,sub(pos[use]-pos[cur]));
	}
};

vvc<pi> ls;
vvc<int> ss;
vvc<int> memo;

int getans(const Convex&c,int s){
	auto [k,u]=c.query(s);
	if(k<si(memo)){
		return memo[k][lwb(ss[k],u)];
	}else{
		assert(u==s);
		return u;
	}
}

vc<Convex> cs;
int off;

void init(signed L, signed N, std::vector<long long> T, std::vector<signed> W, signed X, signed M, std::vector<signed> S){
	off=(int)L*X;
	pb(pos,S);
	ls.resize(M+1);
	rep(i,N)if(W[i]>X){
		ls[0].eb(T[i],W[i]-X);
	}
	ss.resize(M+1);
	rep(i,M+1){
		soin(ls[i]);
		vc<pi> tmp;
		if(i+1<M){
			int mx=-inf;
			for(auto [s,t]:ls[i]){
				int u=s+t*(pos[i+1]-pos[i]);
				if(chmax(mx,u)){
					tmp.eb(s,t);
					ss[i+1].pb(u);
				}
				ls[i+1].eb(mx,t);
			}
		}
		ls[i].swap(tmp);
	}
	memo.resize(M+1);
	gnr(i,1,M+1){
		memo[i].resize(si(ss[i]));
		Convex c(i);
		int head=0;
		rep(j,si(ss[i])){
			int s=ss[i][j];
			while(head<si(ls[i])&&ls[i][head].a<s){
				c.add_point(ls[i][head++]);
			}
			memo[i][j]=getans(c,s);
		}
	}
	
	cs.eb(0);
	for(auto p:ls[0]){
		cs.pb(cs.back());
		cs.back().add_point(p);
	}
	
    return;
}

long long arrival_time(long long Y){
	int i=lwb(ls[0],pi(Y,-1));
	return getans(cs[i],Y)+off;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 448 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 600 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 600 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 1 ms 856 KB Output is correct
10 Correct 2 ms 604 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 2 ms 604 KB Output is correct
13 Correct 1 ms 860 KB Output is correct
14 Correct 1 ms 820 KB Output is correct
15 Correct 2 ms 600 KB Output is correct
16 Correct 2 ms 860 KB Output is correct
17 Correct 2 ms 604 KB Output is correct
18 Correct 2 ms 860 KB Output is correct
19 Correct 2 ms 604 KB Output is correct
20 Correct 2 ms 604 KB Output is correct
21 Correct 1 ms 604 KB Output is correct
22 Correct 1 ms 604 KB Output is correct
23 Correct 2 ms 604 KB Output is correct
24 Correct 2 ms 756 KB Output is correct
25 Correct 2 ms 604 KB Output is correct
26 Correct 2 ms 668 KB Output is correct
27 Correct 2 ms 604 KB Output is correct
28 Correct 1 ms 604 KB Output is correct
29 Correct 1 ms 684 KB Output is correct
30 Correct 1 ms 604 KB Output is correct
31 Correct 1 ms 696 KB Output is correct
32 Correct 1 ms 860 KB Output is correct
33 Correct 1 ms 860 KB Output is correct
34 Correct 1 ms 860 KB Output is correct
35 Correct 1 ms 860 KB Output is correct
36 Correct 1 ms 696 KB Output is correct
37 Correct 1 ms 860 KB Output is correct
38 Correct 0 ms 440 KB Output is correct
39 Correct 1 ms 348 KB Output is correct
40 Correct 1 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 1 ms 448 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 600 KB Output is correct
14 Correct 1 ms 600 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 1 ms 856 KB Output is correct
17 Correct 2 ms 604 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 2 ms 604 KB Output is correct
20 Correct 1 ms 860 KB Output is correct
21 Correct 1 ms 820 KB Output is correct
22 Correct 2 ms 600 KB Output is correct
23 Correct 2 ms 860 KB Output is correct
24 Correct 2 ms 604 KB Output is correct
25 Correct 2 ms 860 KB Output is correct
26 Correct 2 ms 604 KB Output is correct
27 Correct 2 ms 604 KB Output is correct
28 Correct 1 ms 604 KB Output is correct
29 Correct 1 ms 604 KB Output is correct
30 Correct 2 ms 604 KB Output is correct
31 Correct 2 ms 756 KB Output is correct
32 Correct 2 ms 604 KB Output is correct
33 Correct 2 ms 668 KB Output is correct
34 Correct 2 ms 604 KB Output is correct
35 Correct 1 ms 604 KB Output is correct
36 Correct 1 ms 684 KB Output is correct
37 Correct 1 ms 604 KB Output is correct
38 Correct 1 ms 696 KB Output is correct
39 Correct 1 ms 860 KB Output is correct
40 Correct 1 ms 860 KB Output is correct
41 Correct 1 ms 860 KB Output is correct
42 Correct 1 ms 860 KB Output is correct
43 Correct 1 ms 696 KB Output is correct
44 Correct 1 ms 860 KB Output is correct
45 Correct 0 ms 440 KB Output is correct
46 Correct 1 ms 348 KB Output is correct
47 Correct 1 ms 860 KB Output is correct
48 Correct 150 ms 32036 KB Output is correct
49 Correct 155 ms 32340 KB Output is correct
50 Correct 162 ms 32568 KB Output is correct
51 Correct 161 ms 32340 KB Output is correct
52 Correct 155 ms 32340 KB Output is correct
53 Correct 154 ms 32280 KB Output is correct
54 Correct 163 ms 32312 KB Output is correct
55 Correct 102 ms 27296 KB Output is correct
56 Correct 154 ms 32344 KB Output is correct
57 Correct 143 ms 32020 KB Output is correct
58 Correct 154 ms 32428 KB Output is correct
59 Correct 153 ms 32336 KB Output is correct
60 Correct 154 ms 32300 KB Output is correct
61 Correct 153 ms 32340 KB Output is correct
62 Correct 2 ms 600 KB Output is correct
63 Correct 2 ms 604 KB Output is correct
64 Correct 73 ms 16432 KB Output is correct
65 Correct 77 ms 16404 KB Output is correct
66 Correct 120 ms 32068 KB Output is correct
67 Correct 152 ms 32220 KB Output is correct
68 Correct 141 ms 32156 KB Output is correct
69 Correct 62 ms 32852 KB Output is correct
70 Correct 66 ms 32852 KB Output is correct
71 Correct 73 ms 32852 KB Output is correct
72 Correct 105 ms 32860 KB Output is correct
73 Correct 72 ms 32692 KB Output is correct
74 Correct 78 ms 32852 KB Output is correct
75 Correct 1 ms 604 KB Output is correct
76 Correct 2 ms 604 KB Output is correct
77 Correct 1 ms 604 KB Output is correct
78 Correct 86 ms 32604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 1 ms 448 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 600 KB Output is correct
14 Correct 1 ms 600 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Correct 1 ms 348 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 1 ms 600 KB Output is correct
20 Correct 1 ms 604 KB Output is correct
21 Correct 1 ms 600 KB Output is correct
22 Correct 1 ms 348 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
25 Correct 1 ms 348 KB Output is correct
26 Correct 1 ms 348 KB Output is correct
27 Correct 1 ms 856 KB Output is correct
28 Correct 2 ms 604 KB Output is correct
29 Correct 1 ms 604 KB Output is correct
30 Correct 2 ms 604 KB Output is correct
31 Correct 1 ms 860 KB Output is correct
32 Correct 1 ms 820 KB Output is correct
33 Correct 2 ms 600 KB Output is correct
34 Correct 2 ms 860 KB Output is correct
35 Correct 2 ms 604 KB Output is correct
36 Correct 2 ms 860 KB Output is correct
37 Correct 2 ms 604 KB Output is correct
38 Correct 2 ms 604 KB Output is correct
39 Correct 1 ms 604 KB Output is correct
40 Correct 1 ms 604 KB Output is correct
41 Correct 2 ms 604 KB Output is correct
42 Correct 2 ms 756 KB Output is correct
43 Correct 2 ms 604 KB Output is correct
44 Correct 2 ms 668 KB Output is correct
45 Correct 2 ms 604 KB Output is correct
46 Correct 1 ms 604 KB Output is correct
47 Correct 1 ms 684 KB Output is correct
48 Correct 1 ms 604 KB Output is correct
49 Correct 1 ms 696 KB Output is correct
50 Correct 1 ms 860 KB Output is correct
51 Correct 1 ms 860 KB Output is correct
52 Correct 1 ms 860 KB Output is correct
53 Correct 1 ms 860 KB Output is correct
54 Correct 1 ms 696 KB Output is correct
55 Correct 1 ms 860 KB Output is correct
56 Correct 0 ms 440 KB Output is correct
57 Correct 1 ms 348 KB Output is correct
58 Correct 1 ms 860 KB Output is correct
59 Correct 150 ms 32036 KB Output is correct
60 Correct 155 ms 32340 KB Output is correct
61 Correct 162 ms 32568 KB Output is correct
62 Correct 161 ms 32340 KB Output is correct
63 Correct 155 ms 32340 KB Output is correct
64 Correct 154 ms 32280 KB Output is correct
65 Correct 163 ms 32312 KB Output is correct
66 Correct 102 ms 27296 KB Output is correct
67 Correct 154 ms 32344 KB Output is correct
68 Correct 143 ms 32020 KB Output is correct
69 Correct 154 ms 32428 KB Output is correct
70 Correct 153 ms 32336 KB Output is correct
71 Correct 154 ms 32300 KB Output is correct
72 Correct 153 ms 32340 KB Output is correct
73 Correct 2 ms 600 KB Output is correct
74 Correct 2 ms 604 KB Output is correct
75 Correct 73 ms 16432 KB Output is correct
76 Correct 77 ms 16404 KB Output is correct
77 Correct 120 ms 32068 KB Output is correct
78 Correct 152 ms 32220 KB Output is correct
79 Correct 141 ms 32156 KB Output is correct
80 Correct 62 ms 32852 KB Output is correct
81 Correct 66 ms 32852 KB Output is correct
82 Correct 73 ms 32852 KB Output is correct
83 Correct 105 ms 32860 KB Output is correct
84 Correct 72 ms 32692 KB Output is correct
85 Correct 78 ms 32852 KB Output is correct
86 Correct 1 ms 604 KB Output is correct
87 Correct 2 ms 604 KB Output is correct
88 Correct 1 ms 604 KB Output is correct
89 Correct 86 ms 32604 KB Output is correct
90 Correct 192 ms 35192 KB Output is correct
91 Correct 429 ms 67012 KB Output is correct
92 Correct 454 ms 66816 KB Output is correct
93 Correct 448 ms 67240 KB Output is correct
94 Correct 436 ms 67156 KB Output is correct
95 Correct 442 ms 67004 KB Output is correct
96 Correct 431 ms 67248 KB Output is correct
97 Correct 132 ms 30544 KB Output is correct
98 Correct 429 ms 66936 KB Output is correct
99 Correct 452 ms 67204 KB Output is correct
100 Correct 451 ms 67140 KB Output is correct
101 Correct 458 ms 66824 KB Output is correct
102 Correct 438 ms 66864 KB Output is correct
103 Correct 444 ms 67120 KB Output is correct
104 Correct 363 ms 49188 KB Output is correct
105 Correct 415 ms 53572 KB Output is correct
106 Correct 454 ms 74988 KB Output is correct
107 Correct 477 ms 74488 KB Output is correct
108 Correct 487 ms 74820 KB Output is correct
109 Correct 505 ms 74360 KB Output is correct
110 Correct 489 ms 74580 KB Output is correct
111 Correct 294 ms 67928 KB Output is correct
112 Correct 307 ms 67920 KB Output is correct
113 Correct 423 ms 68928 KB Output is correct
114 Correct 581 ms 70176 KB Output is correct
115 Correct 385 ms 67964 KB Output is correct
116 Correct 350 ms 68824 KB Output is correct
117 Correct 176 ms 39252 KB Output is correct
118 Correct 202 ms 39504 KB Output is correct
119 Correct 176 ms 37444 KB Output is correct
120 Correct 197 ms 39504 KB Output is correct
121 Correct 192 ms 40792 KB Output is correct
122 Correct 427 ms 62032 KB Output is correct
123 Correct 637 ms 70128 KB Output is correct
124 Correct 598 ms 69968 KB Output is correct
125 Correct 661 ms 69932 KB Output is correct