Submission #873502

# Submission time Handle Problem Language Result Execution time Memory
873502 2023-11-15T07:56:05 Z Elvin_Fritl Beautiful row (IZhO12_beauty) C++17
0 / 100
7 ms 2524 KB
#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops")
///#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
 
#include <bits/stdc++.h>
 
using namespace std;
 
/// toto -> 1
 
#define pb push_back
#define pii pair<int,int>
#define pll pair<ll,ll>
#define io                      \
    ios_base::sync_with_stdio(0); \
    cin.tie(0);                   \
    cout.tie(0);
#define all(a) a.begin(),a.end()
#define rep(k,i,n) for(ll k=i;k<n;k++)
#define repp(k,i,n) for(ll k=n-1;k>=i;k--)
#define rech(k) for(char k='a';k<='z';k++)
#define SZ(a) (int)a.size()
#define MX(a) *max_element(all(a))
#define MN(a) *min_element(all(a))
#define SM(a) accumulate(all(a),0LL)
#define vi vector<int>
#define vl vector<long long>
#define vvl vector<vector<long long>>
#define vvi vector<vector<int>>
 
/// toto -> 2
 
const int mod = 1e9 + 7 , modd = 998244353;
 
 
typedef long long ll;
 
void F1(bool res) {
    if(res) {
        cout<<"Yes\n" ;
    }
    else {
        cout<<"No\n" ;
    }
}
 
struct mint{
    ll val;
 
    mint(int64_t v = 0) {
        v %= mod;
        if (v < 0) v += mod;
        val = v;
    }
 
    mint& operator+=(const mint& other) {
        val += other.val;
        if (val >= mod) val -= mod;
        return *this;
    }
 
    mint& operator-=(const mint& other) {
        val += mod - other.val;
        if (val >= mod) val -= mod;
        return *this;
    }
 
    mint& operator*=(const mint& other) {
        val = (int64_t)val * other.val % mod;
        return *this;
    }
 
    mint& operator/=(const mint& other) {
        return *this *= other.inv();
    }
 
    friend mint operator+(mint a, const mint& b) { return a += b; }
    friend mint operator-(mint a, const mint& b) { return a -= b; }
    friend mint operator*(mint a, const mint& b) { return a *= b; }
    friend mint operator/(mint a, const mint& b) { return a /= b; }
 
    mint pow(int64_t exp) const {
        mint a = *this, res = 1;
        while (exp > 0) {
            if (exp & 1)
                res *= a;
            a *= a;
            exp >>= 1;
        }
        return res;
    }
 
    mint inv() const {
        assert(val != 0);
        return pow(mod - 2);
    }
 
    friend ostream& operator<<(ostream& os, const mint& m) {
        return os << m.val;
    }
};
 
ll bp(ll n,ll m){
    if(m == 0){
        return 1;
    }
    if(m == 1){
        return n%mod;
    }
    if(m%2==0){
        return bp(n*n%mod,m/2)%mod;
    }
    return n*bp(n,m-1)%mod;
}
 
 
/// toto -> 3
 
const int N = 21, M = 33, inf = 1e9 + 99;
const ll inff = 5e18;
 
int func1(int n){
    int res = 0;
    while(n > 0){
        if(n%2 == 1){
			res++;
		}
        n /= 2;
    }
    return res;
}
 
int func2(int n){
    int res = 0;
    while(n > 0){
        if(n % 3 == 1){
            res++;
		}
        n /= 3;
    }
    return res;
}
 
int dp[(1<<N)][N];

void solve(){
	int n; 
	cin >> n;
    int v[n + 1][n + 1] , a[n + 1];
    rep(i,1,n+1){
        cin >> a[i];
    }
    rep(i,1,n+1){
         rep(j,1,n+1){
            v[i][j] = 0;
            if(func1(a[i]) == func1(a[j])){
				v[i][j] = 1;
			}
            else if(func2(a[i]) == func2(a[j])){
				v[i][j] = 1;
			} 
        }
    }
     rep(i,0,n){
        dp[(1<<i)][i] = 1;
    }
    rep(i,1,(int)(1<<n)){
        if(__builtin_popcount(i) == 1){
			continue;
		}
         rep(j,0,n){
            if((i&(1<<j))){
				 rep(u,0,n){
					if((i&(1<<u)) && j != u){
						if(v[j+1][u+1]){
							dp[i][j] += dp[i^(1<<j)][u];
						}
					}
				}
			}
        }
    }
    int res = 0;
    rep(i,0,n){
        res += dp[(1<<n)-1][i];
    }
    cout << res << endl;;
	
}
 
int32_t main()
{
 
    io;
    
    ll t=1;
    ///  cin>>t;
    rep(_,1,t+1)
    {
        cerr << "Start of test case " << _ << "\n";
        ///cout<<"Case #"<<_<<": ";
        solve();
        cerr << endl;
        cerr << endl;
    }
    return 0;
 
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 464 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Incorrect 7 ms 2524 KB Output isn't correct
12 Halted 0 ms 0 KB -