Submission #870067

# Submission time Handle Problem Language Result Execution time Memory
870067 2023-11-06T20:38:15 Z chonka Giraffes (JOI22_giraffes) C++
100 / 100
5816 ms 5272 KB
#include<bits/stdc++.h>
using namespace std ;
typedef long long ll ;
typedef unsigned long long ull ;
typedef pair < int , int > pii ;
typedef vector < int > vi ;
#define fi first
#define se second
mt19937 rng(chrono::high_resolution_clock::now().time_since_epoch().count());

#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define all(x) begin(x), end(x)
#define sz(x) (int)(x).size()

#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")

const int MAXN = 8007 ;

int n ;
int a[ MAXN ] ;

int dp[ 4 ][ MAXN ] ;
int nw[ 4 ][ MAXN ] ;

vector < pii > hr[ 2 ][ MAXN ] ;
vector < pii > vr[ 2 ][ MAXN ] ;

void solve ( ) {
    cin >> n ;
    for ( int i = 1 ; i <= n ; ++ i ) {
        cin >> a[ i ] ;
    }
    for ( int j = 0 ; j < 4 ; ++ j ) {
        for ( int i = 1 ; i <= n ; ++ i ) {
            dp[ j ][ i ] = 0 ;
        }
    }
    for ( int len = 2 ; len <= n + 1 ; ++ len ) {
        for ( int j = 0 ; j < 4 ; ++ j ) {
            for ( int i = 1 ; i <= n ; ++ i ) {
                if ( dp[ j ][ i ] > n ) { continue ; }
                if ( ( j % 2 ) == 0 ) {
                    hr[ 0 ][ a[ i ] ].push_back ( { j , i } ) ;
                    hr[ 1 ][ a[ i ] + dp[ j ][ i ] ].push_back ( { j , i } ) ;
                }
                else {
                    hr[ 1 ][ a[ i ] ].push_back ( { j , i } ) ;
                    hr[ 0 ][ a[ i ] - dp[ j ][ i ] ].push_back ( { j , i } ) ;
                }
                if ( ( j / 2 ) == 0 ) {
                    vr[ 0 ][ i ].push_back ( { j , i } ) ;
                    vr[ 1 ][ i + dp[ j ][ i ] ].push_back ( { j , i } ) ;
                }
                else {
                    vr[ 1 ][ i ].push_back ( { j , i } ) ;
                    vr[ 0 ][ i - dp[ j ][ i ] ].push_back ( { j , i } ) ;
                }
            }
        }
        for ( int j = 0 ; j < 4 ; ++ j ) { 
            for ( int i = 1 ; i <= n ; ++ i ) {
                if ( dp[ j ][ i ] > n ) {
                    nw[ j ][ i ] = n + 1 ;
                    continue ;
                }
                nw[ j ][ i ] = dp[ j ][ i ] ;
                
                while ( nw[ j ][ i ] <= n ) {
                    int enx = i , eny = a[ i ] ;
                    int specx , specy ;
                    if ( ( j / 2 ) == 0 ) { enx += nw[ j ][ i ] ; specx = 1 ; }
                    else { enx -= nw[ j ][ i ] ; specx = 0 ; }

                    if ( ( j % 2 ) == 0 ) { eny += nw[ j ][ i ] ; specy = 1 ; }
                    else { eny -= nw[ j ][ i ] ; specy = 0 ; }
                    if ( enx < 1 || n < enx ) {
                        nw[ j ][ i ] = n + 1 ;
                        break ;
                    }
                    if ( eny < 1 || n < eny ) {
                        nw[ j ][ i ] = n + 1 ;
                        break ;
                    }
                    bool done = false ;
                    for ( auto [ ori , x ] : vr[ specx ][ enx ] ) {
                        if ( dp[ ori ][ x ] >= nw[ j ][ i ] ) { continue ; }
                        if ( ( ori % 2 ) == 0 ) {
                            if ( ( j % 2 ) == 0 ) {
                                if ( a[ i ] < a[ x ] && a[ x ] + dp[ ori ][ x ] <= eny ) {
                                    done = true ;
                                    break ;
                                }
                            }
                            else {
                                if ( eny <= a[ x ] && a[ x ] + dp[ ori ][ x ] < a[ i ] ) {
                                    done = true ;
                                    break ;
                                }
                            }
                        }
                        else {
                            if ( ( j % 2 ) == 0 ) {
                                if ( a[ i ] < a[ x ] - dp[ ori ][ x ] && a[ x ] <= eny ) {
                                    done = true ;
                                    break ;
                                }
                            }
                            else {
                                if ( eny <= a[ x ] - dp[ ori ][ x ] && a[ x ] < a[ i ] ) {
                                    done = true ;
                                    break ;
                                }
                            }
                        }
                    }
                    for ( auto [ ori , x ] : hr[ specy ][ eny ] ) {
                        if ( dp[ ori ][ x ] >= nw[ j ][ i ] ) { continue ; }

                        if ( ( ori / 2 ) == 0 ) {
                            if ( ( j / 2 ) == 0 ) {
                                if ( i < x && x + dp[ ori ][ x ] <= enx ) {
                                    done = true ;
                                    break ;
                                }
                            }
                            else {
                                if ( enx <= x && x + dp[ ori ][ x ] < i ) {
                                    done = true ;
                                    break ;
                                }
                            }
                        }
                        else {
                            if ( ( j / 2 ) == 0 ) {
                                if ( i < x - dp[ ori ][ x ] && x <= enx ) {
                                    done = true ;
                                    break ;
                                }
                            }
                            else {
                                if ( enx <= x - dp[ ori ][ x ] && x < i ) {
                                    done = true ;
                                    break ;
                                }
                            }
                        }
                    }
                    if ( done == true ) { break ; }
                    ++ nw[ j ][ i ] ;
                }
            }
        }
        for ( int i = 1 ; i <= n ; ++ i ) {
            hr[ 0 ][ i ].clear ( ) , hr[ 1 ][ i ].clear ( ) ;
            vr[ 0 ][ i ].clear ( ) , vr[ 1 ][ i ].clear ( ) ;
        }
        bool done = true ;
        for ( int j = 0 ; j < 4 ; ++ j ) {
            for ( int i = 1 ; i <= n ; ++ i ) {
                dp[ j ][ i ] = nw[ j ][ i ] ;
                if ( dp[ j ][ i ] < n ) { done = false ; }
            }
        }
        if ( done == true ) {
            cout << n - ( len - 1 ) << "\n" ;
            return ;
        }
    }
}

int main ( ) {
    ios_base :: sync_with_stdio ( false ) ;
    cin.tie ( NULL ) ;
    int t = 1 ; // cin >> t ; 
    while ( t -- ) { solve ( ) ; }
    return 0 ;
}

Compilation message

giraffes.cpp: In function 'void solve()':
giraffes.cpp:86:32: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
   86 |                     for ( auto [ ori , x ] : vr[ specx ][ enx ] ) {
      |                                ^
giraffes.cpp:117:32: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  117 |                     for ( auto [ ori , x ] : hr[ specy ][ eny ] ) {
      |                                ^
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1116 KB Output is correct
2 Correct 1 ms 1116 KB Output is correct
3 Correct 1 ms 1116 KB Output is correct
4 Correct 1 ms 1116 KB Output is correct
5 Correct 1 ms 1116 KB Output is correct
6 Correct 1 ms 1116 KB Output is correct
7 Correct 1 ms 1116 KB Output is correct
8 Correct 1 ms 1116 KB Output is correct
9 Correct 1 ms 1116 KB Output is correct
10 Correct 1 ms 1116 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1116 KB Output is correct
2 Correct 1 ms 1116 KB Output is correct
3 Correct 1 ms 1116 KB Output is correct
4 Correct 1 ms 1116 KB Output is correct
5 Correct 1 ms 1116 KB Output is correct
6 Correct 1 ms 1116 KB Output is correct
7 Correct 1 ms 1116 KB Output is correct
8 Correct 1 ms 1116 KB Output is correct
9 Correct 1 ms 1116 KB Output is correct
10 Correct 1 ms 1116 KB Output is correct
11 Correct 1 ms 1368 KB Output is correct
12 Correct 1 ms 1116 KB Output is correct
13 Correct 1 ms 1116 KB Output is correct
14 Correct 1 ms 1116 KB Output is correct
15 Correct 1 ms 1116 KB Output is correct
16 Correct 1 ms 1116 KB Output is correct
17 Correct 1 ms 1116 KB Output is correct
18 Correct 1 ms 1216 KB Output is correct
19 Correct 1 ms 1112 KB Output is correct
20 Correct 1 ms 1112 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1116 KB Output is correct
2 Correct 1 ms 1116 KB Output is correct
3 Correct 1 ms 1116 KB Output is correct
4 Correct 1 ms 1116 KB Output is correct
5 Correct 1 ms 1116 KB Output is correct
6 Correct 1 ms 1116 KB Output is correct
7 Correct 1 ms 1116 KB Output is correct
8 Correct 1 ms 1116 KB Output is correct
9 Correct 1 ms 1116 KB Output is correct
10 Correct 1 ms 1116 KB Output is correct
11 Correct 1 ms 1368 KB Output is correct
12 Correct 1 ms 1116 KB Output is correct
13 Correct 1 ms 1116 KB Output is correct
14 Correct 1 ms 1116 KB Output is correct
15 Correct 1 ms 1116 KB Output is correct
16 Correct 1 ms 1116 KB Output is correct
17 Correct 1 ms 1116 KB Output is correct
18 Correct 1 ms 1216 KB Output is correct
19 Correct 1 ms 1112 KB Output is correct
20 Correct 1 ms 1112 KB Output is correct
21 Correct 1 ms 1112 KB Output is correct
22 Correct 2 ms 1112 KB Output is correct
23 Correct 4 ms 1368 KB Output is correct
24 Correct 6 ms 1360 KB Output is correct
25 Correct 8 ms 1116 KB Output is correct
26 Correct 9 ms 1116 KB Output is correct
27 Correct 9 ms 1112 KB Output is correct
28 Correct 9 ms 1236 KB Output is correct
29 Correct 9 ms 1128 KB Output is correct
30 Correct 11 ms 1384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1116 KB Output is correct
2 Correct 1 ms 1116 KB Output is correct
3 Correct 1 ms 1116 KB Output is correct
4 Correct 1 ms 1116 KB Output is correct
5 Correct 1 ms 1116 KB Output is correct
6 Correct 1 ms 1116 KB Output is correct
7 Correct 1 ms 1116 KB Output is correct
8 Correct 1 ms 1116 KB Output is correct
9 Correct 1 ms 1116 KB Output is correct
10 Correct 1 ms 1116 KB Output is correct
11 Correct 1 ms 1368 KB Output is correct
12 Correct 1 ms 1116 KB Output is correct
13 Correct 1 ms 1116 KB Output is correct
14 Correct 1 ms 1116 KB Output is correct
15 Correct 1 ms 1116 KB Output is correct
16 Correct 1 ms 1116 KB Output is correct
17 Correct 1 ms 1116 KB Output is correct
18 Correct 1 ms 1216 KB Output is correct
19 Correct 1 ms 1112 KB Output is correct
20 Correct 1 ms 1112 KB Output is correct
21 Correct 1 ms 1112 KB Output is correct
22 Correct 2 ms 1112 KB Output is correct
23 Correct 4 ms 1368 KB Output is correct
24 Correct 6 ms 1360 KB Output is correct
25 Correct 8 ms 1116 KB Output is correct
26 Correct 9 ms 1116 KB Output is correct
27 Correct 9 ms 1112 KB Output is correct
28 Correct 9 ms 1236 KB Output is correct
29 Correct 9 ms 1128 KB Output is correct
30 Correct 11 ms 1384 KB Output is correct
31 Correct 464 ms 1980 KB Output is correct
32 Correct 2986 ms 4188 KB Output is correct
33 Correct 5639 ms 4900 KB Output is correct
34 Correct 5731 ms 4980 KB Output is correct
35 Correct 5816 ms 4776 KB Output is correct
36 Correct 5733 ms 4936 KB Output is correct
37 Correct 5625 ms 4780 KB Output is correct
38 Correct 5566 ms 5032 KB Output is correct
39 Correct 5636 ms 5020 KB Output is correct
40 Correct 5670 ms 5272 KB Output is correct